Preview
Unable to display preview. Download preview PDF.
References
Burstall R.M. (1980) Electronic Category Theory. Proc. Ninth Annual Symposium on the Mathematical Foundations of Computer Science. Rydzyua, Poland.
Burstall R.M. and Landin P.J. (1969) Programs and Their Proofs: An Algebraic Approach. Machine Intelligence 4. Edinburgh Univ. Press. pp 17–44.
Burstall R.M. and Rydeheard D.E. (1986) Computational Category Theory. To appear.
Colmerauer A. et al. (1973) Etude et realisation d'un système PROLOG. Convention de Research IRIA-Sesori No. 77030.
Eriksson L.H. (1984) Syntheis of a Unification Algorithm in a Logic Programming Calculus. Journal of Logic Programming. Vol. 1. No. 1.
Gordon M.J.C., Milner R. and Wadsworth C.P. (1979) Edinburgh LCF. Lecture Notes in Comp. Sci. Springer-Verlag.
Hewitt C. (1972) Description and Theoretical Analysis (Using Schemata) of PLANNER: A Language for Proving Theorems and Manipulating Models in a Robot. Ph.D. Dept. Maths. M.I.T. Cambridge. Mass.
Huet G. (1976) Résolution d'équations dans les languages d'ordre 1,2,...,ω. Thèse d'etat, Specialité Maths. University of Paris VII.
Huet G. (1980) Confluent Reductions: Abstract Properties and Applications to Term Rewriting Systems. J.A.C.M. 27.4 pp 797–821.
Huet G. and Oppen D.C. (1980) Equations and Rewrite Rules: A Survey. S.R.I. Research Report, S.R.I. International, Menlo park, Calif.
Kleisli H. (1965) Every Standard Construction is Induced by a Pair of Adjoint Functors. Proc. Am. Maths. Soc. 16. pp. 544–546.
Levi G. and Sirovich F. (1975) Proving Program Properties, Symbolic Evaluation and Logical Procedural Semantics. In L.N.C.S. 32. Math. Foundations of Computer Science. Springer-Verlag.
Mac Lane S. (1971) Categories for the Working Mathematician. Springer-Verlag, New York.
MacQueen D. (1984) Modules for Standard ML. Proc. A.C.M. Conf. on LISP and Functional Prog. Languages.
Manna Z. and Waldinger R. (1980) Deductive Synthesis of The Unification Algorithm. S.R.I. Research Report.
Martelli A. and Montanari U. (1982) An Efficient Unification Algorithm. A.C.M. Trans. on Prog. Languages and Systems. Vol. 4. No. 2.
Milner R. (1978) A theory of type polymorphism in programming. J. Comp. Sys. Sci. 17, 3. pp. 348–375.
Milner R. (1984) A Proposal for Standard ML. Proc. A.C.M. Symp. on LISP and Functional Programming.
Paterson M.S. and Wegman M.N. (1978) Linear Unification. J. Comp. Sys. Sci. 16, 2, pp. 158–167.
Paulson L.C. Verifying the Unification algorithm in LCF. Science of Comp. Programming 5.
Robinson J.A. (1965) A machine-oriented logic based on the resolution principle. J.A.C.M. 12,1. pp. 23–41.
Robinson J.A. and Wos L.T. (1969) Paramodulation and Theorem Proving in First-Order Theories with Equality. Machine Intell. 4. American Elsevier. pp. 135–150.
Siekman J.H. (1984) Universal Unification. In the 7th Internal. Conf. on Automated Deduction. L.N.C.S. 170.
Editor information
Rights and permissions
Copyright information
© 1986 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Rydeheard, D.E., Burstall, R.M. (1986). A categorical unification algorithm. In: Pitt, D., Abramsky, S., Poigné, A., Rydeheard, D. (eds) Category Theory and Computer Programming. Lecture Notes in Computer Science, vol 240. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-17162-2_139
Download citation
DOI: https://doi.org/10.1007/3-540-17162-2_139
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-17162-1
Online ISBN: 978-3-540-47213-1
eBook Packages: Springer Book Archive