
ON THE COMPLEXITY OF BRANCHING PROGRAMS

AND DECISION TREES FOR CLIQUE FUNCTIONS

Ingo Wegener*
FB 20-Informatik, Johann Wolfgang Goethe-Universitit,
6000 Frankfurt a.M., Fed. Rep. of Germany

Abstract

Because of the slow progress in proving lower bounds on the circuit

complexity of Boolean functions one is interested in restricted models

of Boolean circuits like depth restricted circuits, decision trees,

branching programs, width-k branching programs and k-times-only bran-

ching programs. We prove here exponentiallower bounds on the decision

tree complexity of clique functions. For one-time-only branching pro-

grams we prove for k-clique functions large polynomial lower bounds if

k is fixed and exponential lower bounds for k increasing with n. Fi-

nally we introduce the hierarchy of the classes BPk(P) of all sequen-

ces of Boolean functions which may be computed by k-times-only branching

programs of polynomial size. We show constructively that BPI(P) is a

proper subset of BP2(P).

I. INTRODUCTION

Until now one knows only a few poor methods for the proof of lower

bounds on the circuit complexity of explicitly defined Boolean func-

tions. Therefore one has considered since a long time restricted mo-

dels like formulae, monotone circuits, branching programs, contact sche-

mes (Nechiporuk [9]) and also restricted models of branching programs

like width restricted branching programs (Ajtai et al. [I], Barrington

[2], Borodin/Dolev/Fich/Paul [3], Chandra/Furst/Lipton [4], Pudl~k [10]

and Yao [15]) and (depth restricted) k-times-only branching programs

(Ajtai et al. [I], Dunne [5], Kriegel/Waack [7], Masek [8], Pudl[k/

Z[k [11] and Wegener [12], [13], [14]). We assume that the reader is

familiar with Boolean circuits and formulae. A decision tree is a di-

rected, labelled binary tree where the inner nodes are labelled by

Boolean variables and the leaves by Boolean constants. One starts at

the root and after reaching an inner node one tests that variable which

* Supported in part by DFG-grants No. We 1066/I-2 and Me 872/I-I

is the label of the node. If its value is 0 (or I) one goes to the left

(or right) successor. The label of the leaf one reaches is the value of

the function computed by the decision tree. DT(f), the decision tree

complexity of f, is the minimal number of inner nodes of a decision tree

for f.A branching program is a directed acylic graph with one source

where the computation starts, inner nodes of outdegree 2 and sinks of

outdegree 0. The labelling and the mode of computation is similar to

that of decision trees, the proper complexity measure is BP(f) . Width-

k branching programs are levelled and have not more than k nodes on each

level. On the other hand k-times-only branching programs (BPkS) have a

depth restriction. One is allowed to test each variable on each path

of computation only for k times, the complexity measure is BPk(f). Ob-

viously all optimal decision trees are BPlS. A computation of a BP k

needs at most kn points of time while the computation time for width-k

branching programs is of the same size as the number of nodes of the

program. The problem is to decide which functions may be computed effi-

ciently even by restricted branching programs and for which functions

one can prove large lower bounds in the restricted models. For width

restricted branching programs this problem has a surprising solution

(Barrington [2]). Sequences of Boolean functions can be computed by

branching programs of polynomial size and constant width iff they can

be computed by circuits of polynomial size and logarithmic depth.

We are far from similar results for depth restricted branching pro-

grams. For the motivation of BPkS we refer to Wegener [12]. Masek [8],

Pudl[k/Z~k [11] and Ajtai et al. [I] proved tight relations between the

size of BPs (BPkS) and the space complexity of Turing machines (so-

called eraser Turing machines).

The purpose of this paper is to present methods for the proof of lower

bounds on the decision tree and BP I complexity of Boolean functions.
n

We apply these methods to clique functions. The clique function fk

where 3 ~k<n-1 is defined on N = (~) variables corresponding to the
n

possible edges of an n-vertex graph, fk computes I iff the graph spe-

cified by the variables contains a k-clique.

In Chapter 2 we consider decision trees and present some general lower

bound techniques.

In Chapter 3 we present our main method, a lower bound method for BP I

We show which computation paths cannot lead to the same computation

node in a BP I, since a BP I cannot separate the situations by repea-

S.

ting an old test. This method leads to strong lower bounds for clique

functions. The largest lower bounds we obtain are of size exp{8(N1/2)}

for the number of variables N. This method has first been presented in

a preliminary version of this paper [13]. Dunne [5] applied this method

to other functions. Recently Ajtai et al. [I] and Kriegel/Waack [7]

used this approach to prove even lower bounds of size exp{e(N)}.

In Chapter 4 we consider the hierarchy problem for BPkS. Let BPk(P) be

the class of sequences of Boolean functions computable by BPkS of poly-

nomial size. We conjecture that these classes build a proper hierarchy,

i.e. BPk_I(P) is a proper subclass of BPk(P). We present candidates

which may separate the classes and prove that BPI (P) is a proper sub-

class of BP2(P).

2. ON THE DECISION TREE COMPLEXITY OF CLIQUE FUNCTIONS

Similar to Boolean formulae we count here the number of leaves instead

of the number of inner nodes of decision trees. This number is only by

] larger than the decision tree complexity.

Definition I: Let DT*(f) :=DT(f)+I (DT0(f),DTI (f)) denote the minimal

number of leaves (0-1eaves, 1-1eaves) in a decision tree for f. Let M(f)

be the minimal number of monoms in a disjunctive form for f.

M(f) is also the complexity of f in E2-circuits , that means circuits of

depth 2 where the last level consists of an v-gate. The following re-

sult shows that decision trees are less efficient than depth-2 cir-

cuits.

Theorem I: i) DT*(f) > DT0(f) + DTI (f) .

ii) DT I (f) > M(f) .

iii) DT0(f) > M(~).

Proof: i) is obvious.

ii) Consider a decision tree for f with the minimal number of l-leaves.

Any 1-1eaf L corresponds to a unique path from the root to L. Let m(L)

be the monom consisting of all variables and negated variables which

must be I if we follow this path. Then f is the disjunction of all m(L)

and we obtain a disjunctive form for f with DTI (f) monoms.

iii) follows in a similar way. Q.E.D.

The reader is asked to convince himself that the number of]-leaves of

a decision tree for f may be smaller than the number of prime impli-

cants of f. But the following result, whose easy proof is left to the

reader, shows that this cannot happen for monotone functions.

Proposition I__.'_ If f is monotone, M(f) is equal to the number of prime

implicants of f and M(~) is equal to the number of prime clauses of f.

In [13] the number of prime clauses of the clique function is estimated.

The number of prime implicants obviously equals (n k) . These estimations

combined with Theorem I and Proposition I lead to the following theorem.

Theorem 2: DT(fk) ~ (k) + (k-l) n-k+1 DT(f3) ~ 5 n-5 ; •

In order to obtain larger lower bounds on the decision tree complexity

of clique functions we use another general approach. We have already

seen that the monom corresponding to a path from the root to a 1-1eaf

(0-leaf) in a decision tree for f is an implicant (a clause) of f. We

label the edges of a decision tree such that edges to left (right) suc-

cessors get label 0 (I). Then we may identify each node v with the 0-1-

sequence (il,...,im) consisting of the labels of the edges lying on the

path from the root to v. By our considerations above we get the follo-

wing result.

Theorem 3: Let f be a Boolean function and let Z I (~0) be the length

of the shortest prime implicant (prime clause) of f. Any decision tree

for f contains all nodes (il,...,im) where the number of ones is less

than ZI and the number of zeros is less than ~0" In particular

DT(f) > E ~ (~).

0~m<i0+Zi-2 m-~0+1<J~1-1

We apply this result to clique functions. Obviously all prime implicants

have length (~) corresponding to the edges of a k-clique. Thus ~i=(~).

The prime clauses have different lengths. A shortest prime clause cor-

responds to a minimal set of edges destroying any k-clique. The remai-

ning edges build a maximal edge set of a graph without any k-clique. By

the well-known Theorem of Tur&n such a graph consists of k-1 groups of

vertices of nearly the same size (differing at most by I) such that a

vertex is connected to all vertices of other groups. By an easy con-
n

vexity argument the number of edges is overestimated if we handle

as an integer. We have to estimate the number of missing edges. There

~.--~-I missing edges incident to each node. are

Thus i0::[n(~_n I - 1)/2] is appropriate.

The lower bound of Theorem 3 gives only polynomial lower bounds for

constant k. For k increasing with n the lower bound improves the bounds

of Theorem 2. If for example k(n) :=[n2/3], 10 as well as 11 are of size

! n4/3_o(n4/3)
2

Corollary I: DT(f~(n)) > 2 n4/3/2-O(n4/3) for k(n) :=[n2/3].

In [13] also upper bounds on the decision tree complexity of clique

functions are presented. The estimation of the size of a decision tree

leads already for very simple algorithms to hard combinatorial problems,

e.g. one may apply results on the number of clique-free graphs (Erd~s/

Kleitman/Rothschild [6]).

3. ON THE BPI-COMPLEXITY OF CLIQUE FUNCTIONS

As we have seen it is rather easy to prove large lower bounds on the

decision tree complexity of Boolean functions. Decision trees are easy

to describe but they are often puffed up. They may contain the same

large subtree at different places. In order to decrease the size of the

computation scheme it would be sufficient to describe the subtree only

once and to point from many nodes to the root of the subtree. This is

allowed in branching programs. Furthermore it is obvious that optimal

decision trees have the property that on each path of computation each

variable is tested only once. This ensures that the depth is bounded by

the number of variables. In branching programs a node may have many pre-

decessors and the subfunctions which have to be computed if one reaches

this node from different predecessors need not to be equal. One may se-

parate these situations again by repeating tests one has done before.

The advantage of this procedure is the reduction of the size of the

branching program at the cost of increasing the depth. For one-time-only

branching programs (BPlS) the depth is also bounded by the number of va-

riables. The size of BPlS for f may be polynomial even if DT(f) is expo-

nential (see [12]

We use the followlng approach for the proof of lower bounds on the BP l-

complexity of clique functions. In the discussion above we have seen

that in branching programs it is sometimes necessary to repeat tests in

order to separate situations one has merged before. This is not allowed

in BPIS. There we can merge situations only if we are not forced to

separate them by asking an old question again. A merging of two nodes

v and w is possible if and only if the knowledge that one has reached

v o_rr w and the knowledge of all variables not tested on any path to v

or w is sufficient to determine the value of the function. These con-

siderations show that mergings are not possible near the source of the

branching program. Therefore BPIS behave near the source like decision

trees. We prove that mergings are possible only after a certain number

of tests.

Theorem 4: Let v and w be different nodes in a BP I for ~the clique func-

tion f~. If on a path to v and also on a path to w we have tested at

most ki:=(~)-I variables positively and at most k0:= n-2(~)-k+2 vari-

ables negatively neither v nor w may be a sink of the program. Further-

more it is not possible to merge v and w without changing the BP I on

paths to v or w.

Proof: Neither v or w is a sink since on some path to v or w we have

not tested positively all variables of a prime implicant (k I < (~))and

we have not tested negatively all variables of a prime clause (k0<i0,

the length of the shortest prime clause , see Chapter 2). Here we need

the following fact which holds for BPIS but not for BPkS and k ~ 2. For

each path in a BP I there exists some input for which we have to follow

this path.

If v is a successor of w (or vice versa) we cannot merge these nodes

without creating a cycle which is forbidden for branching programs. We

consider in the following those paths from the source to v and w which

fulfil the assumptions of the Theorem. Since v and w are not on the

same path there exists an edge e which has been tested positively (ne-

gatively) if we reach v (w). The clique function is symmetric with res-

pect to all edges, thus we may assume w.l.o~g, that e is the edge (1,2).

Each path in a BP I corresponds to a partial graph where some edges are

existing (tested positively), some edges are forbidden (tested negati-

vely) and the other edges are variable (not tested yet). Let G I {G2) be

the partial graph corresponding to the chosen path from the source to

v(w). The edge (1,2) exists in G I and is forbidden in G 2.

We prove the claim in the following way. We show that we can fix all

edges not tested on the paths to v or w in such a way that either one

of the (perhaps partial) graphs G~ or G~ arising from G I and G 2 by this

supplement may be completed to a graph without a k-clique and to a

graph with a k-clique or G~ contains a k-clique and G~ does not. In any

n if we merge v and w and do not case we cannot compute correctly fk

change some of the paths leading to v or w.

Let A be the set of vertices v { {1,2} such that v is on some existing

edge of G 2. Obviously IAI < 2(~)-2. We construct B in the following way

starting with the empty set. For each forbidden edge of G I we add one

incident vertex w { {1,2} to B. This is possible since the edge (1,2)

exists in G I. Again obviously IBI < n-2(~)-k+2. Thus C:={I,...,n}-A-B

contains at least k vertices, in particular I and 2. Let D be a k-ele-

ment subset of C containing I and 2. By our construction above there

does not exist any forbidden edge on D in G 1 or any existing edge in G 2

incident with some vertex in D~

We assume that v and w are merged to the node z. Let E* be the set of

edges not tested on any path to v or w, these are the only edges which

may be tested on paths starting in z. For (i,j) 6 E* we set

xij=1 if i,j 6 D and xij=0 otherwise. Let G~ and G~ be the (perhaps

partial) graphs arising from G I and G 2 by deciding the existence of the

edges of E* in the described way. G~ has no forbidden edge on D. Either

G~ contains a k-clique or the k-clique D is still possible and no

k-clique is already completed. The computation has to stop since we are

not allowed to test any variable without violating the conditions of a

BP I. But in the second case we do not know the value of the function.

The value may be I since D is possible and it may be 0 since we have

not completed any k-clique. This would be a contradiction and we may

assume that G~ contains a k-clique.

Let us now investigate G~. By the same arguments as above G~ has to con-

tain a k-clique or the existence of a k-clique has to be impossible. We

reach the same sink for the inputs corresponding to G~ and G~. Thus G~

has to contain a k-clique. Vertices with positive degree in G~ belong

to D U A. Since (1,2) is forbidden in G~ this graph does not contain

the k-clique D. Since G 2 does not contain any k-clique and since we test

afterwards only edges on D positively G~ does not contain any k-clique

on A. Finally G~ does not contain any edge joining A and D. Thus G~ is

free of any k-clique and the assumption that we may merge v and w leads

to a contradiction.

Q.E.D.

8

The reader may convince himself that the parameters of Theorem 4 cannot

be improved significantly. If k=3, we have k]=2 and k0= n-7. There is

n where two paths on which 2 edges have been tested positi- a BP I for f3

vely and 4n-13 edges have been tested negatively are merged.

Theorem 4 shows that all nodes corresponding to 0-]-sequences of at

most k 0 zeros and k I ones exist and are different. Hence we get the
Z Z (~) .

lower bound BPI(f~) > 0~n<k0+kl m_k0~J<k I

At first we evaluate this bound for constant k. For m > 2k I the second
m

sum is dominated by (kl . Thus

m E mk])
E = ~ (0<m~k0+k I BP I (f~) > 0<m<k0+kl (k 1)

=~((k0+kl)k I+1)=~(n k(k-1)/2) .

For constant k we get only polynomial lower bounds but the polynomial

grows much faster than the size of the disjunctive normal form which is

8 (n k) •

The bound is large if k 0 and k I have nearly the same size.

Let k(n):=[(2n/3)I/2]. Then

fk(n))=n/3-o(n) and
k1=' 2k(n)
k0=n-2' 2)-k+2=n/3-o(n).

A BP I for fn k(n) is up to level min (k0,kl)=n/3-o(n) a complete binary

tree and we can conclude that
n 3-o(n)

BP I (fk(n)) =~(2n/) .

Our bound is worse for larger k(n) . For k(n) > n I/2 the parameter k 0 is

negative and Theorem 4 seems to be useless. But then we apply the ob-

vious fact that the BPl-complexity of some function f is not smaller

than the BP]-complexity of each subfunction f' of f.

Proposition 2: fn-mk_m is a subfunction of fnk.

Proof : Replace all variables xij where I~i~ and n-m+1<j~ by ones.

Q.E.D.

Hence we can conclude for example that
n ifn/2+k(n)

BPl(fn/2) > BPI' k(n))"

Let k(n) :=[(n/3)I/2]. Then we get k1=n/6-o(n) and k0=n/6-o(n), thus

9

BP1(f</2)=~(2n/6-°(n))._ The following theorem summarizes some of the

applications of Theorem 4.

Theorem 5: i) If k is fixed~

BPI (f~)=~(nk(k-1)/2).

ii) If k(n) :=[(2n/3) I/2], BPI (f~(n))=~(2n/3-o(n)) .

iii) BPI (f~/2)=~(2n/6-°(n)).

4. THE BPk(P)-HIERARCHY

We know now that BPIS may be much more efficient than decision trees

but much less efficient than branching programs or circuits. Therefore

one has to ask how much one has to increase the resources in order to

get efficient branching programs. We ask whether one can compute more

functions efficiently by BPk+iS than by BPkS.

Definition 2: BPk(P) is the set of all sequences of Boolean functions

fn:{0,1}n~{0,1} such that BPk(fn) < p(n) for some polynomial p. BP(P)

is defined analogously.

Obviously BP1(p)~...~BPk(P)~BPk+1(p)~.o._c_Bp(p).

If all inclusions were proper we would obtain an interesting hierarchy

of easy problems, namely those problems having branching programs of

polynomial size. For a sequence fn the minimum k such that fn £ BPk(P)

would be an interesting new measure for the complexity of functions in

BP(P). On the other hand BP(P) is not too small. BP(P) contains all f
n

of polynomial formula size (see Wegener [12]) and all fn of logarithmic

space complexity with respect to Turing machines (Pudl&k/Z&k [11]).

We can only prove that the first inclusion of the hierarchy is proper.

Let gn be the exactly-half clique function computing I iff the speci-

fied graph on n vertices consists of an n/2-clique and n/2 isolated

vertices. Pudl~k/Z~k [11] proved that gn is not in BPI(P) .

Theorem 6: BP I (p) c Bp 2(P)

10

Proof: By the result of Pudl[k/Z&k [11] it is sufficient to construct

for gn a BP 2 of polynomial size.

gn(X) : I iff in Gn(X), the graph specified by x, the degree of each

vertex is 0 or n/2-I, and there is some vertex i* of degree n/2-1 such

that all vertices i < i* have degree 0 and all vertices of positive

degree are connected to i*.

It is easy to design a BP I on m variables which has size 0(m 2) and m+1

sinks and where all inputs with exactly i ones reach the i-th sink

(0~i~4n). Let T£ be such a BP I on the variables x£,j (£<j~iq). We obtain

T~ from T£ by replacing the sinks i { {0,n/2-I} by 0-sinks, the sink 0

by the source of T~+ I if Z < n and a 0-sink if £=n, and the sink n/2-I

by the source of E[,£+ I if £ < n and a 0-sink if £=n. Let El, j for

£ < j be a BP I of quadratic size counting the ones among

Xmj (£+1<~m<j-1) and Xjm (j+1<m<n) . We obtain E~,j from E£,j in the

following way. The sinks i { {0,n/2-2} are replaced by 0-sinks, the

sinks i 6 {0,n/2-2} are replaced by a test of x£j. If i=0 and xij=1 or

i=n/2-2 and x£j=0 we reach 0-sinks. For the other two possibilities we

reach the source of El,j+ I if j < n and l-sinks if j=n. The resulting

branching program is shown in Fig. 1.

This branching program computes gn" We reach the E~ -chain iff

deg(1):...=deg(£-1)=0 and deg(£)=n/2-1. Then we reach a l-sink of E~, n

iff for j ~ £ either deg(j):0 or deg(j)=n/2-] and vertex j is connected

to vertex £.

The branching program is a BP 2. A path passes at most

T~,.. ,T~ E* E* The variable xi,i+ j is tested in
"" ' £,£+I' £,n"

T~ (if i < £) , in E* (if £ < i) and in E~,i+ j (if £<i+j), thus at
1 £,i

most twice.

Each of the subprograms T~ and E~,j has size 0(n2) . The total size is

0(n4), since the number of subprograms in 0(n2). The number of variables

is N=(~). Hence the BP 2 is of polynomial size 0(N2) .

Q.E.D.

Let g~ be a function on (~) variables corresponding to the possible

hyperedges of length k in a hypergraph on n vertices, g~ (x) = I iff

the hypergraph specified by x consists of an n/2-hyperclique and n/2

n is a candidate to separate BP k I(P) from BPk(P). isolated vertices, gk

f

11

Figure I

By the methods of Theorem 6 we can prove that g~ belongs to BPk(P) .

We conjecture that branching programs of polynomial size for
n gk "have to look at many hyperedges from all its k vertices".

References

[. t]

[2]

[3]

[4]

[5]

Ajtai,M./Babai,L./Hajnal~ ~oml6s,M./Pudl~k,P./R6dl,V./
Szemer&di,E.~ur~n,G.: Two lower bounds for branching programs,
18. STOC, 30-38, 1986

Barrington,D.A.: Bounded-width polynomial-size branching programs
recognize exactly those languages in NC I , 18.STOC,I-5,1986

Borodin,A./Dolev,D°/Fich,F.E./Paul,W.: Bounds for width two
branching programs, 15.STOC, 87-93, 1983

Chandra,A.K./Furst,M.L./Lipton,R.J.: Multiparty protocols,
15.STOC, 94-99, 1983

Dunne,P.: Lower bounds on the complexity of l-time only branching
programs, FCT, LNCS 199, 90-99, !985

12

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Erd~s,P./Kleitman,D.J./Rothschild,B.L.: Asymptotic enumeration
of Kn-free graphs. Colloq. Intern.sulle Teorie Comb.,Accad.Naz.
Lincei, Rome, 19-27, 1976

Kriegel,K./Waack,S.: Lower bounds on the complexity of real-time
branching programs, Techn. Rep.,Akad.d.Wiss{Berlin (GDR), 1986

Masek,W.: A fast algorithm for the string editing problem and
decision graph complexity, M.Sc. Thesis,MIT, 1976

Nechiporuk,E.I.: A Boolean function, Sov.Math.Dokl. 7,
999-1000, 1966

Pudl&k,P.: A lower bound on complexity of branching programs,
11.MFCS,LNCS 176, 480-489, 1984

Pudl[k,P./Z~k,S.: Space complexity of computations,
Preprint, Univ. Prague, 1983

Wegener,I.: Optimal decision trees and one-time-only branching
programs for symmetric Boolean functions, Information and Control
62, 129-143, 1984

Wegener,I.: On the complexity of branching programs and decision
trees for clique functions, Techn. Rep.,Univ. Frankfurt a.M., 1984

Wegener,I.: Time-space trade-offs for branching programs,
Journal of Computer and System Sciences 32, 91-96, 1986

Yao, A.C.: Lower bounds by probabilistic arguments,24.FOCS,
420-428, 1983

