Abstract
We show that a 5-colouring of the vertices of an n-vertex planar graph may be computed in O(log n log* n) time by an exclusive-read exclusive-write parallel RAM with O(n/(log n log* n)) processors. Our algorithm, while faster than all previously known methods, is at the same time the first parallel 5-colouring algorithm to achieve optimal speedup. It should be emphasized that although input to the algorithm is a planar graph, we do not require a planar embedding to be given as part of the input.
Other results concern the colouring of graphs of bounded genus and the construction of search structures for triangular planar subdivisions.
On leave from Institute of Informatics, Warsaw University.
Supported by the DFG, SFB 124, TP B2, VLSI Entwurfsmethoden und Parallelität.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
M. J. Atallah and M. T. Goodrich: “Efficient Plane Sweeping in Parallel”. Proceedings, 2nd Annual Symposium on Computational Geometry (1986), 216–225.
K. Appel and W. Haken: “Every Planar Map is Four Colorable. Part I: Discharging”. Illinois Journal of Mathematics 21 (1977), 429–490.
K. Appel, W. Haken, and J. Koch: “Every Planar Map is Four Colorable. Part II: Reducibility”. Illinois Journal of Mathematics 21 (1977), 491–567.
M. Ajtai, J. Komlós, and E. Szemerédi: “An O(n log n) Sorting Network”. Proceedings, 15th Annual ACM Symposium on Theory on Computing (1983), 1–9.
B. Bollobás: “Extremal Graph Theory”. Academic Press, London, 1978.
F. Bauernöppel and H. Jung: “Fast Parallel Vertex Colouring”. Proceedings, International Conference on Fundamentals of Computation Theory (1985), LNCS 199, 28–35.
J. Boyar and H. Karloff: “Coloring Planar Graphs in Parallel”. To appear in Journal of Algorithms.
R. Cole: “Parallel Merge Sort”. 27th Annual Symposium on Foundations of Computer Science (1986), 511–516.
M. Chrobak and K. Diks: “Two Algorithms for Coloring Planar Graphs with 5 Colors”. Technical Report, Columbia University, January 1987.
N. Chiba, T. Nishizeki, and N. Saito: “A Linear 5-Coloring Algorithm of Planar Graphs”. Journal of Algorithms 2:4 (1981), 317–327.
R. Cole and U. Vishkin: “Deterministic Coin Tossing with Applications to Optimal Parallel List Ranking”. Information and Control 70:1 (1986), 32–53.
K. Diks: “A Fast Parallel Algorithm for Six-Colouring of Planar Graphs”. Proceedings, 12th Symposium on Mathematical Foundations of Computer Science (1986), LNCS 233, 273–282.
S. Even: “Graph Algorithms”. Pitman, London, 1979.
G. N. Frederickson: “On Linear-Time Algorithms for Five-Coloring Planar Graphs”. Information Processing Letters 19:5 (1984), 219–224.
M. R. Garey, D. S. Johnson, and L. Stockmeyer: “Some Simplified N P-Complete Graph Problems”. Theoretical Computer Science 1 (1976), 237–267.
A. V. Goldberg, S. A. Plotkin, and G. E. Shannon: “Parallel Symmetry-Breaking in Sparse Graphs”. Proceedings, 19th Annual ACM Symposium on Theory of Computing (1987).
T. Hagerup: “Parallel 5-Colouring of Planar Graphs”. Technical Report 10/1986, Universität des Saarlandes, November 1986.
D. Kirkpatrick: “Optimal Search in Planar Subdivisions”. SIAM Journal on Computing 12:1 (1983), 28–35.
R. J. Lipton and R. E. Miller: “A Batching Method for Coloring Planar Graphs”. Information Processing Letters 7:4 (1978), 185–188.
J. Naor: “A Fast Parallel Coloring of Planar Graphs with Five Colors”. To appear in Information Processing Letters.
M. H. Williams: “A Linear Algorithm for Colouring Planar Graphs with Five Colours”. The Computer Journal 28:1 (1985), 78–81.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1987 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hagerup, T., Chrobak, M., Diks, K. (1987). Parallel 5-colouring of planar graphs. In: Ottmann, T. (eds) Automata, Languages and Programming. ICALP 1987. Lecture Notes in Computer Science, vol 267. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-18088-5_25
Download citation
DOI: https://doi.org/10.1007/3-540-18088-5_25
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-18088-3
Online ISBN: 978-3-540-47747-1
eBook Packages: Springer Book Archive