
Control of Parallelism in the Manchester Dataflow Machine

Carlos A. Ruggiero a n d J o h n Sa rgean t

D e p a r t m e n t of C o m p u t e r Science

Univers i ty of M a n c h e s t e r

M a n c h e s t e r M13 9PL

E n g l a n d

A b s t r a c t

Fine-grain parallel ma~:hines, such as tagged-token dataltow machines, allow very high degrees of

program parallelism to be exploited for many applications. In fact, so much parallelism can be generated

that it is necessary to control parallelism in order to bound store usage.

This paper reviews software mechanisms for parallelism control, which rely on merely planting extra

code to control execution ol,'der. Such methods are found to he inadequate, so a fundamental architectural

mechanism known as a t h ro t t l e is considered necessary. Various attempts to design a throttle for

the Manchester Dataflow Machine are described. The eventual solution, a coarse-grain, process-based

throttle, is explained, and simulation results are presented which demonstrate its effectiveness.

1 Background and Terminology

1.1 I n t r o d u c t i o n

In the future, computers will have to rely on a high degree of parallelism exploitation if large increases in

speed are to be achieved. Numerous architectures for parallel machines have been proposed, but there are

a number of unsolved problems and it is still not clear whether wide-purpose parallel computers will ever

be cost-effective.

One of the principal problems in some architectures is excessive usage of resources for highly parallel

programs. This paper describes the work done in the Manchester Dataflow project on this problem. We

present not only our final solution, but also some of the ideas which were tried and found inadequate along

the way.

1,2 O u r E v e n t u a l A i m

The sort of parallel processillg system which we would regard as idea] would have the following basic

properties:

® W i d e - p u r p o s e h a r d w a r e - the machine should be able to execute a rich variety of application

programs efficiently.

® W i d e - p u r p o s e l a n g u a g e - there should be a powerful, expressive language, suitable for many sorts

of computation. This language must be implementable efficiently, and must be able to exploit the

fnil potential of the hardware.

• S imple , cos t -e f fec t ive h a r d w a r e - The cost per processor should not exceed the cost of a serial

processor by more than a small constant factor.

® L i n e a r s ca l ab i l i t y - A machine composed of N hardware units should be N/(N-1) times faster than

one with only N-1 units.

It is quite clear tha t the above properties are difficult to achieve, and certainly no current system

achieves them, but they give us some criteria for assessing any real parallel machine.

1.3 G r a n u l a r i t y

The granularity of a parallel machine is the size of the units by which work is allocated to processors.

Conventional multiprocessors are coa r se gra in ; work is allocated by processes. Dataflow machines are

f ine-gra ln ; the aRocation unit is a dataflow single instruction. Architectures with intermediate granularity

are now emerging, such as the Flagship rewrite-rule machine which is also being designed at Manchester

[WaWo85].

Fine-grain machines tend to be easily scalable because they can exploit a very high proportion of

the total parallelism available in a program, and because they can use simple hardware mechanisms to

distribute work evenly between processors. (See [BaGu85] for a description of the method used in the

Manchester machine). However, this scaiability is achieved at the cost of extra hardware complexity.

Coarse-grain machines are very cost-effective in hardware, since long sequences of instructions can be

executed seriMIy without any overhead. On the other hand, they do not exploit all the available parallelism,

and it is very difficult to design a coarse-graln machine which is both wide-purpose and scalable.

Even in a machine which is basically fine-grain, there is usually some notion of processes, and some

operations may be performed in a coarser, process-based manner.

1 . 4 D a t a f l o w A r c h i t e c t u r e

It is not the purpose of this paper to explain dataitow principles or the architecture of the Manch-

ester Datafiow Machine (hereafter MDFM). These are described in numerous papers, e.g. [GKWa85,

Gurd85,GWG178]. However, two particular points are explained here because they are necessary to under-

standing the rest of the paper.

The first point is the meaning of a "process" in our machine. The MDFM implements t agged t o k e n

datafiow, in which each token (ie. each item of data which flows) is tagged with an a c t i v a t i o n n a m e (

AN), in order to distinguish it from other tokens flowing through the same piece of code. An activation

name may correspond to an invocation of a function body, or of a loop cycle. We will refer to such a task

as a process. Typically, a process contains 100 - 1000 dataflow instructions.

The mechanism for allocating activation names must ensure that no two processes executing the same

code at the same time can possibly be allocated the same one. In the current hardware, this is achieved by

merely incrementing a counter on each allocation. Clearly, this counter can overflow, and it is eventually

necessary to recycle ANs. This implies that a mechanism for detecting the termination of a process is

required.

The second point is the function of the various stores in the machine. The machine consists of process-

ing r ings (actually only one in the prototype machine) and s t r u c t u r e s tores , connected by a switching

network. The structure stores are fairly similar to conventional stores, and hold the ordinary stored data

structures of the program [SaKi86]. A processing ring contains several stores, two of which are significant

here. The t o k e n s t o r e is simply a queue of tokens waiting to be processed. The m a t c h i n g s to re collects

together matching pairs of tokens (i.e. tokens with the same AN flowing to the same instruction). It

operates in a pseudo-associative manner [SiWa83], and its speed largely determines the maximum perfor-

mance which a processing ring can attain. The token store and matching store represent the main storage

overhead in the machine, and their occupancy is a key factor in determining the cost-effectiveness of the

architecture.

1.5 C o n t r o l o f p a r a l l e l i s m

Many programs have (for at least some of the time) T O O M U C H P A R A L L E L I S M ; orders of magni-

tude more than that available in the machine. If not controlled~ excess parallelism causes excessive store

usage. 1 This effect has been observed in several places, for instance at MIT [ArCu85], in the Japanese

data~ow projects Sigma-l[Shim86], DFM[Amam86] and PLM-D[ItoN86], in the ALICE reduction machine

[DaRe81] and in several candidate architectures which have been simulated for Flagship rewrite-rule ma-

chine [WaWo85]. However, in most cases these observations have not been published.

Consider the execution of a program as a tree. Serial machines traverse the tree in a depth-first manner.

This usually requires very little store apart from that used for the global data structures of the program.

The "natural" execution order for a parallel machine is breadth-first; anything which c a n be done in parallel

is done in parallel. Unfortunately, tiffs requires an amount of store proportional to the total area of the

1Readers not fully convinced that there is a problem should take a glance at the simulation results in section 5 at this
point; they leave little ~oom for doubt!

tree to hold intermediate results. What is needed is l i m i t e d - b r e a d t h execution] go breadth-first until the

machine is busy, and depth-first thereafter.

Ideally, we would like a mecha.,fism to turn the level of activity in the machine up or down at will,

in order to dynamically match the parallelism in the program to the resources available in the machine.

We will ca11 such a mechanism a t h r o t t l e 2. The rest of this paper describes the hunt for an effective,

J_mplementable throttle for the MDFM.

2 Defining the problem

For many programs, the usage of the temporary token stores, the token store and matching store, is

excessive compared to the space used in the structure store to hold the actual data structures of the

program.

Besides excessive paralleSsm, there are other effects which contribute. Dataflow works by eager evalu-

ation. Everything that can be executed will be and intermediate results can be produced long before they

are really needed. These results will wait a long time in the stores, increasing their occupancies.

A particularly nasty case occurs in certain loops. Consider the outermost loop of a typical numeric prob-

Iem, which does sums until either some convergence test is satisfied or a limiting number of cycles is reached:

for ini t ia l

Cycles :=0;

Converged := fa~se~

r e p e a t

Cycles := old Cycles + i;

......... %lots of complex calculations

unti l (cycles=N) or Converged

......... %lots of results returned

end for

In general, tagged-token dataflow systems attempt to unfold loops like this, to try to execute loop

cycles in parallel whenever possible lArGo78]. In this case, the convergence test is calculated near the

end of each cycle, so the (K+l) th cycle cannot start before the Kth has ended. If the convergence test is

removed, however, the (K+I) cycle can start well before the Kth has terminated. In fact, the values of the

variable Cycles are calculated very rapidly and so all the cycles start at about the same time. The store

usage is proportional to N, the number of cycles. Disaster!

From the above we conclude that for any throttle to work, it must :

~As far as we know, this use of the word '~throttle" was originat.ed by Arthur Veen at a dataflow workshop in 1982.

recursive i~era~ive

:Figure 1: Recursive and iterative process trees

1. Limit the activity in the machine : excessive parallelism implies excessive usage of store.

2. Reinforce locality : related instructions or processes should be executed close together in time to

limit the number of results waiting in the matching store.

Before considering methods to implement a throttle, it is useful to show how the execution of a datafiow

program can be viewed as a tree of processes. Such trees tend to take two different forms; one for itexative

programs and one for recursive ones. Consider the two trees in figure 1.

The nodes represent portions of computations e.g. function activations or loop cycles. A solid arc

represents the relationship between a "father" process and its "child" (ie the father creates the child).

Dashed lines represent data dependencies between "brothers". Such dependencies occur most often between

loop cycles, but there may also be others, as in:

Y = F(X);

Z = G(Y)

The recursive tree is typical of a divide-and-conquer algorithm. It is quite deep and very wide at the

bottom. The iterative tree represents a loop with parallel foral l executions within each cycle. It is not

very deep but can be extremely wide.

The area is of the tree is proportional to the total amount of computation. In a tree with no data

dependencies, the minimum execution time for the program (assuming infinitely many processors are

available) is proportional to the depth of the tree, so a wide tree with few data dependencies represents a

program with high parallelism.

An iterative tree should be executed left-to-right to follow the data dependency between processes.

For a simple recursive tree, left-to-right or right-to-left execution are equivalent because there is no data

dependency between brothers.

3 M e t h o d s c o n s i d e r e d i n a d e q u a t e

3.1 S o f t w a r e M e t h o d s

By software methods we mean methods which do not use any support from the hardware, except maybe

some way of determining the level of activity in the machine. Control of parallelism is achieved by extra code

planted by the compiler. There are static software methods where the degree of parallelism is completely

determined at compile time, and dynamic methods where decisions are made at runtime on the basis of

some activity level information.

The problem with the iteration in the preceding section could be solved by synchronising a termination

signal from each cycle with the result of the test which initiates the next cycle so that the (K + l) t h cycle

could not start until the Kth has terminated. This creates a bottleneck at the end of each cycle, but

considerably reduces the store occupancies. We could go further with this idea by allowing two or more

cycles to execute at the same time, thus avoiding the bottleneck.

Another software technique is Function Input Syncronisation (FIS). FIS means that a function will be

executed only when all its input parameters are available. In the example:

D,E,F := FI(A,B,C);

X,Y,Z := F2(E,F~G,H)

F2 would not be allowed to start until E and F had been produced. In that way, F2 would not produce

partial results tha t would increase matching store usage.

The implementation of FIS involves planting extra code to synchronise all the input parameters of a

function or loop. This can be a considerable overhead if done indescriminately. In our implementation,

care was taken to minimise this overhead by imposing FIS only when a new activation name was allocated

(ie. only when a new process was created). Simulation results showed that FIS had a nice effect on the

store usage of some programs without excessive instruction overhead.

Loop serialisation and FIS are useful techniques but they alone are not enough for an effective throttle.

The problems are :

1. They cannot cope with some forms of excessive parallelism, like tha t found in divide-and-conquer

recursive programs.

2. They do not limit the amount of activity in the machine although they tend to reduce it.

3. It is very difficult to determine statically how much synchronisation is required. Overly enthusiastic

use of synchronisation can kill parallelism altogether.

Some more dynamic software methods have been suggested. One of them is the K - b o u n d e d loops

technique propased by Arvind [ArCu85]. The compiler analyses the code and determine the maximum

store usage for a loop cycle (This is not difficult to do for non-recursive code). At run time, the hardware

decides how many loop cycles are a~owed to execute in parallel from the activity level of the machine

(dynamic) and the static information about maximum store usage per cycle.

There are two problems with the K-bounded loop method. Firstly it is not a general solution, since it

cannot handle recursion. Secondly, there is the overhead of the extra instructions needed to control the

loops.

Another idea for dynamic software throttling is to plant two types of code for any parallel program

: one serial and the other parallel. The machine switches from one style of code to the other at run

time, according to how busy it is. Work on program transformation [BuGu85] shows that it is possible to

turn serial, singly recursive, :programs into parallel, double-recursive, ones (and vice-versa) in some cases.

These transformations however~ are not fully automatic at present and often the programer must help the

transformation process. Although this method could be useful in the future, achieving a complete solution

in this way is well beyond the state of the art.

The conclusion is that despite being useful, software techniques are not enough to implement a general

and effective throttle. We need some help from the hardware.

3.2 Fine Grain H a r d w a r e M e t h o d s

It was initially thought tha t for fine grain machines like the MDFM, a fine grain throttle would be ideal.

The reason was that there would be no need for any software modification; a simple hardware mechanism

would do it all for us. The Manchester Dataflow Group has spent considerable effort in that direction.

There have been several suggestions to modify the architecture to implement an effective fine grain throttle.

They all try to give priority to some tokens to the detriment of others. The tokens with highest priority

should be those ones most likely to produce urgently needed results. In the MDFM, this could be achieved

by replacing the token store with a special hardware unit which would order tokens in accordance with

some simple, pre-defined rules.

A first a t tempt 3, was tha t we should turn the token store into a stack. The usual order of token

processing traverses the execution tree of fig. 1 breadth-first and left-to-right. With a stack, depth-first

and right-to-left execution of the tree is favoured.

The token stack worked quite well for divide-and-conquer recursive programs (see recursive tree in fig.

1). Simulation results showed considerable improvement in the store requirements of this type of program

without any apparent increase at execution time. It does not work, however, for iterative programs where it

even makes things worse. The reason for this is that, as we have seen, iterative programs need left-to-right

execution. To favour the last cycles of a loop, as the token stack does, is exactly the wrong thing, and will

increase the store usage. In this case, a token queue performs better.

3suggested and implemented by Inn Watson

Queue-like behaviour is f ~ and it is better for iterative programs Stack behavior is better for recur-

sive ones. After the token stack, an intelligent token queue (ITQ) was proposed, tt.ecalt that a process

corresponds to an activation name. In the ITQ, there would be a "current process" (or a set of current

processes) and all tokens which belonged to that process would be queued for immediate execution. All

the other tokens would be stored. When a current process runs out of tokens it is replaced by another

process and all tokens of these new process are sent out of the store to execute.

It is easy to see that the critical part of the method was to select a new process to replace the one which

had finished. One possibility is to always take the latest created process (this was called highest activation

name rule - HAN). This produced stack behaviour, favouring right-to-left execution. Alternatively, we

could always take the oldest process in the system (lowest activation name rule - LAN), favouring left-to-

right execution. As might be expected, the HAN rule worked well for purely recursive program while the

LAN rule was good for purely iterative ones. The first problem with the ITQ is that the rules are opposite

and it is not clear how to combine them sensibly. Secondly, the hardware to implement the idea would

have to be fairly complicated and fast, and therefore expensive.

There were various other failed attempts, which are described in [Ruggie]. We conclude that the

problem of fine-grain throttling in a tagged-token datafiow machine is far from solved. We could not find

a method which worked, but on the other hand we did not prove that it is impossible to find an effective

method to control parallelism at the instruction level.

4 T h e e v e n t u a l so lu t ion

4.1 T h e b a s i c i d e a

The ITQ idea described in the previous section can be regarded as a first step towards a more coarse grain

approach to the throttling problem. Nodes in the program execution tree can be regarded as processes and

a process corresponds to a generation of an activation name. In the MDFM, an activation name is created

by an instruction called GAN (generate activation name). Note that a process can contain quite a lot of

computation, for instance all cycles of one loop may be one process.

If we could control the number of active processes according to availability of resources in the system we

would be able to solve the throttling problem. A first suggestion for a throttle is as follows. On receiving a

request for starting a new process (every execution of a GAN node), the machine would decide, based on

some information of availability of resources, whether to grant a new activation name or not. If it decides

not, the process would be s u s p e n d e d and would be reactivated some time later. When an active process

finishes, it releases its activation name, which can be used for another process. When sufficient resources

become available, suspended processes can be unsuspended. Note that we use the term suspension to refer

to delay in initially granting an AN to a process. There is no notion of suspending a process once it is

running.

4.2 Scheduling i s s u e s

We have to decide when processes should be suspended and uasuspended, and which processes should be

unsuspended.

Of course, we should not suspend a process if the machine is not busy, so we need some m e a s u r e of

level of a c t i v i t y in the machine. Initially, we used a fixed number of leaf processes in the tree. This

works quite welt, but it is rather sensitive to variations in the sizes of processes. There is also possibility

of deadlock in certain cases. The l e n g t h o f t h e t o k e n queues provides a more accurate measure, and

this is what we actually use. When the token queue length reaches some specified limit, the throttle starts

suspending processes. When it drops below the limit again, i t starts unsuspending them. Since processes

take a while to start up, it would be dangerous to unsnspend too many processes at once, since the store

usage could shoot up once they "got going". We therefore impose a small delay between unsuspensions.

Deadlock is avoided (apart, of course, from the ultimate deadlock of running out of store!), since it would

show up as empty token queues, and this would trigger unsuspensions.

In order to enforce depth-first execution, the first child of a process is never suspended. Subsequent

children may be suspended it the limit on activity level has been reached. The ide~ process to unsuspend

is the one in "bot tom left-hand corner" of the tree, in order to enforce left-to-right execution. This seems

to imply that the thrott le needs an explicit representation of the whole process tree, and that a search of

this tree is necessary on each unsaspension. In fact, a simpler data structure will suffice. For instance, each

level of the tree can be represented as a queue of suspended processes. The next process to unsuspend is

then chosen by taking the queue for the deepest existing level (depth-first) and taking the first process in

the queue (left-to-right). In fact, it is not necessary to globally choose the "bot tom left" process, provided

that the general left-to-righ L depth-first trend is maintained. A more fragmented data structure, which

can be distributed among multiple throttle units, will therefore suffice. Clearly there is a tradeoff between

the complexity of this da ta structure and the quality of thrott l ing obtained.

Although using dynamic information, such as the token queue length, avoids the deadlock problem,

we should still t ry to avoid activating processes which do not have all their input parameters, since that

could make the throttle less effective. Suppose we have a process A which depends on B which depends

on C and so on. There is little point in trying to activate C before B before A! Imposing FIS solves that

problem but it is maybe too strong a condition (it introduces some overhead). Just guaranteeing an order

of execution of GAN nodes consistent with the data dependencies is simple to implement at compile time

and costs very little.

4.3 Variable size of p r o c e s s e s

It is desirable to have processes of fairly uniform size. If they are too small, the overheads of the operation

of the throttle will be high, and it may become a bottleneck. If they are too large, and have a high degree

10

of interna~ parallelism, the throttle will be less effective in controlling store usage.

Small processes can be avoided at compile time, by using techniques (e.g. function inlining, index-

insensitive loops; details have been published previously [BoSa85]) which are already done for efficiency

reasons. A minumum size of process can therefore be guaranteed most of the time. To deal with processes

which are too large is rather more difficult. In principle the software can guarantee a maximum process

size, although non-trivial implementation effort is required.

4 .4 T e r m i n a t i o n D e t e c t i o n fo r P r o c e s s e s

As mentioned above (section 1.4)~ recycling of ANs is by itself a problem that we have to solve. Since

the thrott le hands out activation names, it can recycle them provided that it is provided with messages to

signal the termination of processes.

Termination detection is a quite a tricky problem. Before a termination signal can be generated for a

process, we must make sure tha t every instruction in that process has been executed; no weaker condition

works. The full details of this are beyond the scope of this paper, but will appear in [t~uggie]. There are

basically three possible strategies to detect termination:

1. By software: it is possible to plant code to synchrouise M1 results produced by a process. The

problems with tt6.s method are the excessive use of synchronisation (in the matcldng store) and the

fact that the work ha~ be repeated for every new language implemented. Nevertheless, it is the most

obvious solution and most dataflow groups have adopted it.

2. Token reference counting : !t is possible to simply reference count the activation names 4. Suppose a

reference count for each AN is heId in a hardware table. Instructions ca~ send messages to modify

the counts. For instance, if an instruction takes two input tokens and produces one token with the

same AN, it will reduce the count for tha t AN by 1. Of course this would be far too inefficient to

implement in this form in the hardware~ but it is easy to implement in the simulator, and was used

to get some initial results.

3. Instruction counting : We eventually adopted a scheme which counts not tokens but instructions.

Essentially, the idea is that it is only necessary to count t e r m i n a l instructions, ie. ones which do

not produce further tokens belonging to the same process. The number of terminal instructions can

be determined staticalty~ thereby determining initial values for counters which are decremented as

terminal instructions are actually executed. The message overhead is much smaller than for simple

token counting.

4this was first suggested by Rob Jarrutt

]]

4.5 Ef f i c i en t h a r d w a r e i m p l e m e n t a t i o n for a s ca l ab l e m u l t i p r o c e s s o r

The throttle is a special hardware unit which processes messages such as requests for ANs, activity level

reports, and termination signals. It allocates ANs, and suspends and unsuspends processes; in short,

it is a hardware resource manager. The throttle hardware for the prototype machine is currently being

commissioned. Since it is just a message processor with store, the hardware is identical to that used for

the structure store [KaGu86], with different microcode.

The throttle's data structure can be partitioned among multiple throttle units, in order to maintain

the scalability of the architecture. One throttle unit should be able to service several processing rings.

This, along with other load balancing issues, is currently being investigated by detailed multiprocessor

simulation.

5 S imula t ion results

The results presented here are concerned purely with parallelism control and store usage. Results concerning

other issues such as speedup and code efficiency have been published previously, in the papers referred to

above.

We present results for two programs. The first is the standard, recursive, divide-and-conquer N-queens

(all solutions) problem. The second is Simple, an iterative 2-dimensional hydrodynamics problem. The

latter is a semi-realistic program, comprising about 1500 lines of SISAL. In each case, we use a variety of

problem sizes, and show behaviour unthrottled, and with throttling using an optimum token queue length

of 8. Using higher values for this parameter gives intermediate results. A more complete set of simulation

results can be found in [Ruggie].

Most of the results given below were obtained using a detailed timing simulator for a single-ring MDFM.

The quantities measured are as follows:

S1 The total number of dataflow instructions executed.

Soo The length of the critical[path.

7r The average parallelism, S1/Soo.

TSO The maximum token store occupancy.

M S O The maximum matching store occupancy.

T i m S t The total number of timesteps required.

A N s The number of differen~ activation names allocated.

Processes The total number of processes created.

unthrot t led version

N S1 Sc~ ~r TSO MSO

3 5050 543 9.3 79 246

4 19005 993 [9.] ~23 683

5 76372 1306 ~8.~ 344 2114

6 303075 1646 ~84.L ' ,28:~ 7865

7 N / A

TimSt

26446

88404

344096

1 3 6 9 0 4 1

ANs

35

.01

103

171

Processes

70

254

1006

} 4262

throt t led version

N

|

$1 S ~ ~ I T S O MSO TimSt
!

5050 584 8.6 32 187 26356

19005 1329 14.3 46 366 88282

76372 4598 16.6 61 610 346852

303075 16799 18.0 72 741 1359343

1301346 70613 18.4 87 925 5816388

ANs

30

48

64

76

92

Processes

70

254

1006

4262

18120

Table 1: Simulation Results for the N-queens program

13

The results for N-queens are shown in table 1. The amount of token storage required for the unthrottled

program increases exponentially with N, and indeed it was not possible to run an unthrottled simulation

of 7 queens because too much store was needed. The throttle controls store usage beautifully, but does so

at the cost of reducing para~elism dramatica~y. The total time taken to run the program changes little,

and in fact tends to decrease. This effect is quite common, and is due to the smoothing effect; the usage

of resources over time is more even in throttled execution than in breadth-first execution. The number of

activation names required is also greatly reduced by throttling.

Tables 2 and 3 give results for Simple. Due to the limitations of the timed simulator~ only very small

data sizes could be used. To get some results for slightly larger sizes, a more idealised simulator was also

used. In fact, the results from the two simulators are generally very similar with respect to throttling, so

we believe the results in table 3 to be quite realistic. In table 3, TSOt, MSOt etc. denote figures for the

throttled version of the program.

The results for Simple are rather different from those for N-queens s. Again, the store usage of the

unthrott led version grows rapidly with the program size, and larger data sizes could not be simulated

unthrottled. In fact, the version of the program used here was compiled with FIS. Without this synchroni-

sation, the unthrott led store usage is even higher. The throttle does indeed control parallelism and reduce

store usage considerably. However, it it not as effective as for N-queens. Store usage grows quadratically

with N in the unthrott led version, and linearly in the throttled one. The problem is tha t there are a few

very large processes in the code, due to our compiler being over-enthusiastic about optimisation. Tuning

the compiler would therefore fix this.

The extra instructions planted to detect process termination add about 14% to the total for N-queens~

and about 10% for Simple. However, almost all these extra instructions are single-input instructions which

do not use the matching store; this reduces their real impact considerably. The analyser which plants these

instructions can also be optimised to reduce this overhead.

6 C o n c l u s i o n

A process-based throttle can successfully control parallelism in the MDFM, and has been integrated with

a mechanism for colour recycling. The solution of the throttling problem brings the overall store usage of

data~ow machines into line with that expected of conventional architectures, and so removes one of the

major deficiencies of such machines.

SThis illustrates the danger in the recent trend of baseing assessments of paraUel machines on results from N-queens alone!

14

unthrot t led version

I

11 472 1 1 8 9 3 249 1o011

TimSt

551177

797741

1095401

1441187

1836806

2283997

Processes

612

920

1292

1728

2228

2792

throt t led version

N

6

7

8

9

10

11

S1
m

113716

165074

226588

298328

380152

472441

S (x)

4698

6342

8593

1116~

1400:

1712~

7V

24.2

26.0

26.4

26.7

27.1

27.6

TSO

628

826

945

1064

1380

1152

MSO

1494

1903

2403

2862 I

3544

4363

TimSt

550597

794607

1090701

1432852

1823772

2263461

ANs

34

35

33

36

35

38

Processes

612

920

1292

1728

2228

2792

Table 2: Simulation Results for Simple

N 7r TSO MSO ~-t TSOt MSOt

14 389.6 28621 21467 27.5 2318 6580

16 506.3 38935 28975 27.4 2994 7470

18 634.6 50833 37619 27.7 3292 9748

20 773.2 64315 47399 27.5 3909 9494

Table 3: Results for Simple using the idealised simulator

]5

? References

Amam86 Amamiya et al, Implementat ion and Evaluation of a List-Processing-Oriented Data
Flow Machine, 13th Annual Symposium on Computer Architecture, June 1986

ArCu85 Arvind and Culler D.E., Managing Resources in a Parallel Machine, in Fifth Generation
Computer Architectures, ed. J.V. Woods, North Holland, pp. 103-121, April 1986

ArGo78 Arvind and Gostelow K.P., Some Relationships between Asynchronous Interpreters of
a Dataflow Language, Formal Description of Programming Concepts, ed. Neuhold E.J., North
Holland~ pp. 95-119, 1978

BaGu85 Barahona P.M.C.C. and Gurd J.R., Processor Allocation in a Mult i-Ring Dataflow Ma-
chine, Technical Report UMCS-85-10-3, University of Manchester, October 1985.

BoSa85 Bohm A.P.W. and Saxgeant J , Efficient Dataflow Code Generation for SISAL, Proceedings
International Conference on Parallel Computing, September 1985

BuGu85 Bush V.J. and Gurd J.R., Transforming Recurslve Programs for Execution on Parallel
Machines, Lecture Notes in Computer Science, Vol. 201, pp. 350-367, September 1985

DaRe81 Darlington, J. and Reeve, M, ALICE - A Multiprocessor Reduction Machine for the
Evaluation of Applicative Languages, Proc. conf. on functional programming languages and
computer architecture, 1981.

GKWa85 Gurd J.R., Kirkham C.C. and Watson L, The Manchester Prototype Datafiow Com-
puter, Communications of the ACM, Vol. 28, no. 1, pp. 34-52, January 1985

Gurd85 Gurd J.R., The Manchester Dataflow Machine, Computer Physics Communications, Vo].
37, no. 1, pp. 49-62, July 1985

GWG178 Gurd J.R., Watson I. and Glauert J.R.W., A Multilayered Dataflow Computer Archi-
tecture, Internal Report, Department of Computer Science, University of Manchester, January 1978
(lst edition), March 1980 (3rd edition)

ItoN86 Ito N. et al, The Architecture and Prel iminary Evaluation Results of the Experimental
Parallel Inference Machine PIM-D, 13th Annual Symposium on Computer Architecture, June
1986.

KaGu86 Kawakami K, Gurd J.R., A Scalable Dataflow Structure Store, Proc. of the 13th Annual
Int. Symposium on Computer Architecture, June 1986

MSAg83 McGraw J.R., Skedzielewski S.K., Allan S., Grit D., Oldehoeft R., Glauert J.R.W., Dobes I. and
Hohensee P., SISAL - Streams and Iteration in a Single-Assignment Language, Language
Reference Manual, Version 1.0, Lawrence Livermore National Laboratory, July 1983

Ruggie Ruggiero C., Throt t le Mechanisms for the Manchester Dataflow Computer, Computer
Science Dept., University of Manchester, Ph.D. thesis, in preparation

SaKi86 Sargeant J. and Kirkham C.C., Stored Data Structures on the Manchester Dataflow
Machine, Proc. of the 13th Annual Int. Symposium on Computer Architecture, VoL 14, no. 2, pp.
235-242, June 1986

SiWa8$ da Silva J.G.D. and Watson I., A Pseudo-Associatlve Matching Store with Hardware
Hashing, Proc of the lEE, Vol. 130E, no. 1, pp. 19-24, January 1983

Shim86 Shimada T. et al, Evaluation of a Prototype Data Flow Processor of the Sigma-1 for
Scientific Computations, 13th Annual Symposium on Computer Architecture, June 1986

~VaWo86 Watson, I, Watson, P. and Woods, J.V., Parallel Data-Driven Graph Reduction, in Fifth
Generation Computer Architectures, ed. J.V. Woods, North Holland, April 1986

