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Fine-grain parallel ma~:hines, such as tagged-token dataltow machines, allow very high degrees of 

program parallelism to be exploited for many applications. In fact, so much parallelism can be generated 

that it is necessary to control parallelism in order to bound store usage. 

This paper reviews software mechanisms for parallelism control, which rely on merely planting extra 

code to control execution ol,'der. Such methods are found to he inadequate, so a fundamental architectural 

mechanism known as a t h ro t t l e  is considered necessary. Various attempts to design a throttle for 

the Manchester Dataflow Machine are described. The eventual solution, a coarse-grain, process-based 

throttle, is explained, and simulation results are presented which demonstrate its effectiveness. 

1 Background and Terminology 

1.1 I n t r o d u c t i o n  

In the future, computers  will have to rely on a high degree of parallelism exploitation if large increases in 

speed are to be achieved. Numerous architectures for parallel machines have been proposed, but  there are 

a number of unsolved problems and it is still not clear whether  wide-purpose parallel computers will ever 

be cost-effective. 

One of the principal problems in some architectures is excessive usage of resources for highly parallel 

programs. This paper  describes the work done in the Manchester  Dataflow project  on this problem. We 

present not  only our final solution, but also some of the ideas which were tried and found inadequate along 

the way. 



1,2 O u r  E v e n t u a l  A i m  

The sort of parallel processillg system which we would regard as idea] would have the following basic 

properties: 

® W i d e - p u r p o s e  h a r d w a r e  - the machine should be able to execute a rich variety of application 

programs efficiently. 

® W i d e - p u r p o s e  l a n g u a g e  - there should be a powerful, expressive language, suitable for many sorts 

of computation. This language must be implementable efficiently, and must be able to exploit the 

fnil potential  of the hardware. 

• S imple ,  cos t -e f fec t ive  h a r d w a r e  - The cost per processor should not exceed the cost of a serial 

processor by more than a small constant factor. 

® L i n e a r  s ca l ab i l i t y  - A machine composed of N hardware units should be N/(N-1) times faster than 

one with only N-1 units. 

It is quite clear tha t  the above properties are difficult to achieve, and certainly no current system 

achieves them, but  they give us some criteria for assessing any real parallel machine. 

1.3 G r a n u l a r i t y  

The granularity of a parallel machine is the size of the units by which work is allocated to processors. 

Conventional multiprocessors are coa r se  gra in ;  work is allocated by processes. Dataflow machines are 

f ine-gra ln ;  the aRocation unit is a dataflow single instruction. Architectures with intermediate granularity 

are now emerging, such as the Flagship rewrite-rule machine which is also being designed at Manchester 

[WaWo85]. 

Fine-grain machines tend to be easily scalable because they can exploit a very high proportion of 

the total parallelism available in a program, and because they can use simple hardware mechanisms to 

distribute work evenly between processors. (See [BaGu85] for a description of the method used in the 

Manchester machine). However, this scaiability is achieved at the cost of extra hardware complexity. 

Coarse-grain machines are very cost-effective in hardware, since long sequences of instructions can be 

executed seriMIy without any overhead. On the other hand, they do not exploit all the available parallelism, 

and it is very difficult to design a coarse-graln machine which is both wide-purpose and scalable. 

Even in a machine which is basically fine-grain, there is usually some notion of processes, and some 

operations may be performed in a coarser, process-based manner. 

1 . 4  D a t a f l o w  A r c h i t e c t u r e  

It is not the purpose of this paper to explain dataitow principles or the architecture of the Manch- 

ester Datafiow Machine (hereafter MDFM). These are described in numerous papers, e.g. [GKWa85, 



Gurd85,GWG178]. However, two particular points are explained here because they are necessary to under- 

standing the rest of the paper. 

The first point is the meaning of a "process" in our machine. The MDFM implements t agged  t o k e n  

datafiow, in which each token (ie. each item of data which flows) is tagged with an a c t i v a t i o n  n a m e  ( 

AN ), in order to distinguish it from other tokens flowing through the same piece of code. An activation 

name may correspond to an invocation of a function body, or of a loop cycle. We will refer to such a task 

as a process. Typically, a process contains 100 - 1000 dataflow instructions. 

The mechanism for allocating activation names must ensure that  no two processes executing the same 

code at the same time can possibly be allocated the same one. In the current hardware, this is achieved by 

merely incrementing a counter on each allocation. Clearly, this counter can overflow, and it is eventually 

necessary to recycle ANs. This implies that  a mechanism for detecting the termination of a process is 

required. 

The second point is the function of the various stores in the machine. The machine consists of process-  

ing r ings  (actually only one in the prototype machine) and s t r u c t u r e  s tores ,  connected by a switching 

network. The structure stores are fairly similar to conventional stores, and hold the ordinary stored data 

structures of the program [SaKi86]. A processing ring contains several stores, two of which are significant 

here. The t o k e n  s t o r e  is simply a queue of tokens waiting to be processed. The m a t c h i n g  s to re  collects 

together matching pairs of tokens (i.e. tokens with the same AN flowing to the same instruction). It 

operates in a pseudo-associative manner [SiWa83], and its speed largely determines the maximum perfor- 

mance which a processing ring can attain. The token store and matching store represent the main storage 

overhead in the machine, and their occupancy is a key factor in determining the cost-effectiveness of the 

architecture. 

1.5 C o n t r o l  o f  p a r a l l e l i s m  

Many programs have (for at least some of the time) T O O  M U C H  P A R A L L E L I S M ;  orders of magni- 

tude more than that  available in the machine. If not controlled~ excess parallelism causes excessive store 

usage. 1 This effect has been observed in several places, for instance at MIT [ArCu85], in the Japanese 

data~ow projects Sigma-l[Shim86], DFM[Amam86] and PLM-D[ItoN86], in the ALICE reduction machine 

[DaRe81] and in several candidate architectures which have been simulated for Flagship rewrite-rule ma- 

chine [WaWo85]. However, in most cases these observations have not been published. 

Consider the execution of a program as a tree. Serial machines traverse the tree in a depth-first manner. 

This usually requires very little store apart  from that  used for the global data  structures of the program. 

The "natural" execution order for a parallel machine is breadth-first; anything which c a n  be done in parallel 

is done in parallel. Unfortunately, tiffs requires an amount of store proportional to the total area of the 

1Readers not fully convinced that there is a problem should take a glance at the simulation results in section 5 at this 
point; they leave little ~oom for doubt! 



tree to hold intermediate results. What is needed is l i m i t e d - b r e a d t h  execution] go breadth-first until the 

machine is busy, and depth-first thereafter. 

Ideally, we would like a mecha.,fism to turn the level of activity in the machine up or down at will, 

in order to dynamically match the parallelism in the program to the resources available in the machine. 

We will ca11 such a mechanism a t h r o t t l e  2. The rest of this paper describes the hunt for an effective, 

J_mplementable throttle for the MDFM. 

2 Defining the problem 

For many programs, the usage of the temporary token stores, the token store and matching store, is 

excessive compared to the space used in the structure store to hold the actual data structures of the 

program. 

Besides excessive paralleSsm, there are other effects which contribute. Dataflow works by eager evalu- 

ation. Everything that can be executed will be and intermediate results can be produced long before they 

are really needed. These results will wait a long time in the stores, increasing their occupancies. 

A particularly nasty case occurs in certain loops. Consider the outermost loop of a typical numeric prob- 

Iem, which does sums until either some convergence test is satisfied or a limiting number of cycles is reached: 

for ini t ia l  

Cycles :=0; 

Converged := fa~se~ 

r e p e a t  

Cycles := old Cycles + i; 

......... %lots of complex calculations 

unti l  (cycles=N) or  Converged 

......... %lots of results returned 

end for 

In general, tagged-token dataflow systems attempt to unfold loops like this, to try to execute loop 

cycles in parallel whenever possible lArGo78]. In this case, the convergence test is calculated near the 

end of each cycle, so the (K+l ) th  cycle cannot start before the Kth has ended. If the convergence test is 

removed, however, the (K+I)  cycle can start well before the Kth has terminated. In fact, the values of the 

variable Cycles are calculated very rapidly and so all the cycles start at about the same time. The store 

usage is proportional to N, the number of cycles. Disaster! 

From the above we conclude that for any throttle to work, it must : 

~As far as we know, this use of the word '~throttle" was originat.ed by Arthur Veen at a dataflow workshop in 1982. 



recursive i~era~ive 

:Figure 1: Recursive and iterative process trees 

1. Limit the activity in the machine : excessive parallelism implies excessive usage of store. 

2. Reinforce locality : related instructions or processes should be executed close together in time to 

limit the number of results waiting in the matching store. 

Before considering methods to implement a throttle, it is useful to show how the execution of a datafiow 

program can be viewed as a tree of processes. Such trees tend to take two different forms; one for itexative 

programs and one for recursive ones. Consider the two trees in figure 1. 

The nodes represent portions of computations e.g. function activations or loop cycles. A solid arc 

represents the relationship between a "father" process and its "child" (ie the father creates the child). 

Dashed lines represent data dependencies between "brothers". Such dependencies occur most often between 

loop cycles, but there may also be others, as in: 

Y = F(X); 

Z = G(Y) 

The recursive tree is typical of a divide-and-conquer algorithm. It is quite deep and very wide at the 

bottom. The iterative tree represents a loop with parallel foral l  executions within each cycle. It is not 

very deep but can be extremely wide. 

The area is of the tree is proportional to the total amount of computation. In a tree with no data 

dependencies, the minimum execution time for the program (assuming infinitely many processors are 

available) is proportional to the depth of the tree, so a wide tree with few data dependencies represents a 

program with high parallelism. 

An iterative tree should be executed left-to-right to follow the data dependency between processes. 

For a simple recursive tree, left-to-right or right-to-left execution are equivalent because there is no data 

dependency between brothers. 



3 M e t h o d s  c o n s i d e r e d  i n a d e q u a t e  

3.1 S o f t w a r e  M e t h o d s  

By software methods we mean methods which do not use any support from the hardware, except maybe 

some way of determining the level of activity in the machine. Control of parallelism is achieved by extra code 

planted by the compiler. There are static software methods where the degree of parallelism is completely 

determined at compile time, and dynamic methods where decisions are made at runtime on the basis of 

some activity level information. 

The problem with the iteration in the preceding section could be solved by synchronising a termination 

signal from each cycle with the result of the test which initiates the next cycle so that  the ( K + l ) t h  cycle 

could not start  until  the Kth has terminated. This creates a bottleneck at the end of each cycle, but 

considerably reduces the store occupancies. We could go further with this idea by allowing two or more 

cycles to execute at the same time, thus avoiding the bottleneck. 

Another software technique is Function Input Syncronisation (FIS). FIS means that  a function will be 

executed only when all its input parameters are available. In the example: 

D,E,F := FI(A,B,C); 

X,Y,Z := F2(E,F~G,H) 

F2 would not be allowed to start  until  E and F had been produced. In that  way, F2 would not produce 

partial results tha t  would increase matching store usage. 

The implementation of FIS involves planting extra code to synchronise all the input parameters of a 

function or loop. This can be a considerable overhead if done indescriminately. In our implementation, 

care was taken to minimise this overhead by imposing FIS only when a new activation name was allocated 

(ie. only when a new process was created ). Simulation results showed that  FIS had a nice effect on the 

store usage of some programs without excessive instruction overhead. 

Loop serialisation and FIS are useful techniques but they alone are not enough for an effective throttle. 

The problems are : 

1. They cannot cope with some forms of excessive parallelism, like tha t  found in divide-and-conquer 

recursive programs. 

2. They do not limit the amount of activity in the machine although they tend to reduce it. 

3. It is very difficult to determine statically how much synchronisation is required. Overly enthusiastic 

use of synchronisation can kill parallelism altogether. 

Some more dynamic software methods have been suggested. One of them is the K - b o u n d e d  loops 

technique propased by Arvind [ArCu85]. The compiler analyses the code and determine the maximum 



store usage for a loop cycle (This is not difficult to do for non-recursive code). At run time, the hardware 

decides how many loop cycles are a~owed to execute in parallel from the activity level of the machine 

(dynamic) and the static information about maximum store usage per cycle. 

There are two problems with the K-bounded loop method. Firstly it is not a general solution, since it 

cannot handle recursion. Secondly, there is the overhead of the extra instructions needed to control the 

loops. 

Another idea for dynamic software throttling is to plant two types of code for any parallel program 

: one serial and the other parallel. The machine switches from one style of code to the other at run 

time, according to how busy it is. Work on program transformation [BuGu85] shows that  it is possible to 

turn serial, singly recursive, :programs into parallel, double-recursive, ones (and vice-versa) in some cases. 

These transformations however~ are not fully automatic at present and often the programer must help the 

transformation process. Although this method could be useful in the future, achieving a complete solution 

in this way is well beyond the state of the art. 

The conclusion is that  despite being useful, software techniques are not enough to implement a general 

and effective throttle. We need some help from the hardware. 

3.2 Fine Grain H a r d w a r e  M e t h o d s  

It was initially thought  tha t  for fine grain machines like the MDFM, a fine grain throttle would be ideal. 

The reason was that  there would be no need for any software modification; a simple hardware mechanism 

would do it all for us. The Manchester Dataflow Group has spent considerable effort in that  direction. 

There have been several suggestions to modify the architecture to implement an effective fine grain throttle. 

They all try to give priority to some tokens to the detriment of others. The tokens with highest priority 

should be those ones most likely to produce urgently needed results. In the MDFM, this could be achieved 

by replacing the token store with a special hardware unit which would order tokens in accordance with 

some simple, pre-defined rules. 

A first a t tempt  3, was tha t  we should turn the token store into a stack. The usual order of token 

processing traverses the execution tree of fig. 1 breadth-first and left-to-right. With a stack, depth-first 

and right-to-left execution of the tree is favoured. 

The token stack worked quite well for divide-and-conquer recursive programs (see recursive tree in fig. 

1). Simulation results showed considerable improvement in the store requirements of this type of program 

without any apparent increase at execution time. It does not work, however, for iterative programs where it 

even makes things worse. The reason for this is that,  as we have seen, iterative programs need left-to-right 

execution. To favour the last cycles of a loop, as the token stack does, is exactly the wrong thing, and will 

increase the store usage. In this case, a token queue performs better. 

3suggested and implemented by Inn Watson 



Queue-like behaviour is f ~  and it is better for iterative programs Stack behavior is better for recur- 

sive ones. After the token stack, an intelligent token queue (ITQ) was proposed, tt.ecalt that a process 

corresponds to an activation name. In the ITQ, there would be a "current process" (or a set of current 

processes) and all tokens which belonged to that process would be queued for immediate execution. All 

the other tokens would be stored. When a current process runs out of tokens it is replaced by another 

process and all tokens of these new process are sent out of the store to execute. 

It is easy to see that  the critical part of the method was to select a new process to replace the one which 

had finished. One possibility is to always take the latest created process (this was called highest activation 

name rule - HAN). This produced stack behaviour, favouring right-to-left execution. Alternatively, we 

could always take the oldest process in the system (lowest activation name rule - LAN), favouring left-to- 

right execution. As might be expected, the HAN rule worked well for purely recursive program while the 

LAN rule was good for purely iterative ones. The first problem with the ITQ is that the rules are opposite 

and it is not clear how to combine them sensibly. Secondly, the hardware to implement the idea would 

have to be fairly complicated and fast, and therefore expensive. 

There were various other failed attempts, which are described in [Ruggie]. We conclude that the 

problem of fine-grain throttling in a tagged-token datafiow machine is far from solved. We could not find 

a method which worked, but on the other hand we did not prove that it is impossible to find an effective 

method to control parallelism at the instruction level. 

4 T h e  e v e n t u a l  so lu t ion  

4.1 T h e  b a s i c  i d e a  

The ITQ idea described in the previous section can be regarded as a first step towards a more coarse grain 

approach to the throttling problem. Nodes in the program execution tree can be regarded as processes and 

a process corresponds to a generation of an activation name. In the MDFM, an activation name is created 

by an instruction called GAN (generate activation name). Note that a process can contain quite a lot of 

computation, for instance all cycles of one loop may be one process. 

If we could control the number of active processes according to availability of resources in the system we 

would be able to solve the throttling problem. A first suggestion for a throttle is as follows. On receiving a 

request for starting a new process (every execution of a GAN node ), the machine would decide, based on 

some information of availability of resources, whether to grant a new activation name or not. If it  decides 

not, the process would be s u s p e n d e d  and would be reactivated some time later. When an active process 

finishes, it releases its activation name, which can be used for another process. When sufficient resources 

become available, suspended processes can be unsuspended. Note that we use the term suspension to refer 

to delay in initially granting an AN to a process. There is no notion of suspending a process once it is 

running. 



4.2 Scheduling i s s u e s  

We have to decide when processes should be suspended and uasuspended, and which processes should be 

unsuspended. 

Of course, we should not suspend a process if the machine is not busy, so we need some m e a s u r e  of  

level  of  a c t i v i t y  in the machine. Initially, we used a fixed number of leaf processes in the tree. This 

works quite welt, but  it is rather sensitive to variations in the sizes of processes. There is also possibility 

of deadlock in certain cases. The l e n g t h  o f  t h e  t o k e n  queues  provides a more accurate measure, and 

this is what  we actually use. When the token queue length reaches some specified limit, the throttle starts 

suspending processes. When it  drops below the limit again, i t  starts unsuspending them. Since processes 

take a while to start  up, it would be dangerous to unsnspend too many processes at once, since the store 

usage could shoot up once they "got going". We therefore impose a small delay between unsuspensions. 

Deadlock is avoided (apart,  of course, from the ultimate deadlock of running out of store!), since it would 

show up as empty token queues, and this would trigger unsuspensions. 

In order to enforce depth-first execution, the first child of a process is never suspended. Subsequent 

children may be suspended it the limit on activity level has been reached. The ide~  process to unsuspend 

is the one in "bot tom left-hand corner" of the tree, in order to enforce left-to-right execution. This seems 

to imply that  the thrott le needs an explicit representation of the whole process tree, and that  a search of 

this tree is necessary on each unsaspension. In fact, a simpler data structure will suffice. For instance, each 

level of the tree can be represented as a queue of suspended processes. The next process to unsuspend is 

then chosen by taking the queue for the deepest existing level (depth-first) and taking the first process in 

the queue (left-to-right). In fact, it is not necessary to globally choose the "bot tom left" process, provided 

that  the general left-to-righ L depth-first trend is maintained. A more fragmented data  structure, which 

can be distributed among multiple throttle units, will therefore suffice. Clearly there is a tradeoff between 

the complexity of this da ta  structure and the quality of thrott l ing obtained. 

Although using dynamic information, such as the token queue length, avoids the deadlock problem, 

we should still t ry to avoid activating processes which do not have all their input parameters, since that 

could make the throttle less effective. Suppose we have a process A which depends on B which depends 

on C and so on. There is little point in trying to activate C before B before A! Imposing FIS solves that 

problem but it is maybe too strong a condition (it introduces some overhead). Just  guaranteeing an order 

of execution of GAN nodes consistent with the data dependencies is simple to implement at  compile time 

and costs very little. 

4.3 Variable size of  p r o c e s s e s  

It is desirable to have processes of fairly uniform size. If they are too small, the overheads of the operation 

of the throttle will be high, and it may become a bottleneck. If they are too large, and have a high degree 
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of interna~ parallelism, the throttle will be less effective in controlling store usage. 

Small processes can be avoided at compile time, by using techniques (e.g. function inlining, index- 

insensitive loops; details have been published previously [BoSa85] ) which are already done for efficiency 

reasons. A minumum size of process can therefore be guaranteed most of the time. To deal with processes 

which are too large is rather more difficult. In principle the software can guarantee a maximum process 

size, although non-trivial implementation effort is required. 

4 .4  T e r m i n a t i o n  D e t e c t i o n  fo r  P r o c e s s e s  

As mentioned above (section 1.4)~ recycling of ANs is by itself a problem that  we have to solve. Since 

the thrott le hands out activation names, it can recycle them provided that  it is provided with messages to 

signal the termination of processes. 

Termination detection is a quite a tricky problem. Before a termination signal can be generated for a 

process, we must  make sure tha t  every instruction in that  process has been executed; no weaker condition 

works. The full details of this are beyond the scope of this paper, but will appear in [t~uggie]. There are 

basically three possible strategies to detect termination: 

1. By software: it is possible to plant code to synchrouise M1 results produced by a process. The 

problems with tt6.s method are the excessive use of synchronisation (in the matcldng store) and the 

fact that  the work ha~ be repeated for every new language implemented. Nevertheless, it is the most 

obvious solution and most dataflow groups have adopted it. 

2. Token reference counting : !t is possible to simply reference count the activation names 4. Suppose a 

reference count for each AN is heId in a hardware table. Instructions ca~ send messages to modify 

the counts. For instance, if an instruction takes two input tokens and produces one token with the 

same AN, it will reduce the count for tha t  AN by 1. Of course this would be far too inefficient to 

implement in this form in the hardware~ but  it is easy to implement in the simulator, and was used 

to get some initial results. 

3. Instruction counting : We eventually adopted a scheme which counts not tokens but instructions. 

Essentially, the idea is that  it is only necessary to count t e r m i n a l  instructions, ie. ones which do 

not produce further tokens belonging to the same process. The number of terminal instructions can 

be determined staticalty~ thereby determining initial values for counters which are decremented as 

terminal instructions are actually executed. The message overhead is much smaller than for simple 

token counting. 

4this was first suggested by Rob Jarrutt 



]] 

4.5 Ef f i c i en t  h a r d w a r e  i m p l e m e n t a t i o n  for  a s ca l ab l e  m u l t i p r o c e s s o r  

The throttle is a special hardware unit which processes messages such as requests for ANs, activity level 

reports, and termination signals. It allocates ANs, and suspends and unsuspends processes; in short, 

it is a hardware resource manager. The throttle hardware for the prototype machine is currently being 

commissioned. Since it is just a message processor with store, the hardware is identical to that used for 

the structure store [KaGu86], with different microcode. 

The throttle's data structure can be partitioned among multiple throttle units, in order to maintain 

the scalability of the architecture. One throttle unit should be able to service several processing rings. 

This, along with other load balancing issues, is currently being investigated by detailed multiprocessor 

simulation. 

5 S imula t ion  results  

The results presented here are concerned purely with parallelism control and store usage. Results concerning 

other issues such as speedup and code efficiency have been published previously, in the papers referred to 

above. 

We present results for two programs. The first is the standard, recursive, divide-and-conquer N-queens 

(all solutions) problem. The second is Simple, an iterative 2-dimensional hydrodynamics problem. The 

latter is a semi-realistic program, comprising about 1500 lines of SISAL. In each case, we use a variety of 

problem sizes, and show behaviour unthrottled, and with throttling using an optimum token queue length 

of 8. Using higher values for this parameter gives intermediate results. A more complete set of simulation 

results can be found in [Ruggie]. 

Most of the results given below were obtained using a detailed timing simulator for a single-ring MDFM. 

The quantities measured are as follows: 

S1 The total number of dataflow instructions executed. 

Soo The length of the critical[ path. 

7r The average parallelism, S1/Soo. 

TSO The maximum token store occupancy. 

M S O  The maximum matching store occupancy. 

T i m S t  The total number of timesteps required. 

A N s  The number of differen~ activation names allocated. 

Processes  The total number of processes created. 



unthrot t led  version 

N S1 Sc~ ~r TSO MSO 

3 5050 543 9.3 79 246 

4 19005 993 [9.] ~23 683 

5 76372 1306 ~8.~ 344 2114 

6 303075 1646 ~84.L ' ,28:~ 7865 

7 N / A  

TimSt  

26446 

88404 

344096 

1 3 6 9 0 4 1  

ANs 

35 

.01 

103 

171 

Processes 

70 

254 

1006 

} 4262 

throt t led version 

N 

| 

$1 S ~  ~ I T S O  MSO TimSt  
! 

5050 584 8.6 32 187 26356 

19005 1329 14.3 46 366 88282 

76372 4598 16.6 61 610 346852 

303075 16799 18.0 72 741 1359343 

1301346 70613 18.4 87 925 5816388 

ANs 

30 

48 

64 

76 

92 

Processes 

70 

254 

1006 

4262 

18120 

Table 1: Simulation Results for the N-queens program 
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The results for N-queens are shown in table 1. The amount of token storage required for the unthrottled 

program increases exponentially with N, and indeed it was not possible to run an unthrottled simulation 

of 7 queens because too much store was needed. The throttle controls store usage beautifully, but does so 

at  the cost of reducing para~elism dramatica~y. The total  time taken to run the program changes little, 

and in fact tends to decrease. This effect is quite common, and is due to the smoothing effect; the usage 

of resources over time is more even in throttled execution than in breadth-first execution. The number of 

activation names required is also greatly reduced by throttling. 

Tables 2 and 3 give results for Simple. Due to the limitations of the timed simulator~ only very small 

data  sizes could be used. To get some results for slightly larger sizes, a more idealised simulator was also 

used. In fact, the results from the two simulators are generally very similar with respect to throttling, so 

we believe the results in table 3 to be quite realistic. In table 3, TSOt, MSOt etc. denote figures for the 

throttled version of the program. 

The results for Simple are rather different from those for N-queens s. Again, the store usage of the 

unthrott led version grows rapidly with the program size, and larger data  sizes could not be simulated 

unthrottled. In fact, the version of the program used here was compiled with FIS. Without this synchroni- 

sation, the unthrott led store usage is even higher. The throttle does indeed control parallelism and reduce 

store usage considerably. However, it it not as effective as for N-queens. Store usage grows quadratically 

with N in the unthrott led version, and linearly in the throttled one. The problem is tha t  there are a few 

very large processes in the code, due to our compiler being over-enthusiastic about optimisation. Tuning 

the compiler would therefore fix this. 

The extra instructions planted to detect process termination add about 14% to the total  for N-queens~ 

and about 10% for Simple. However, almost all these extra instructions are single-input instructions which 

do not use the matching store; this reduces their real impact considerably. The analyser which plants these 

instructions can also be optimised to reduce this overhead. 

6 C o n c l u s i o n  

A process-based throttle can successfully control parallelism in the MDFM, and has been integrated with 

a mechanism for colour recycling. The solution of the throttling problem brings the overall store usage of 

data~ow machines into line with that  expected of conventional architectures, and so removes one of the 

major deficiencies of such machines. 

SThis illustrates the danger in the recent trend of baseing assessments of paraUel machines on results from N-queens alone! 
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unthrot t led version 

I 

11 472  1 1 8 9 3  249  1o011 

TimSt 

551177 

797741 

1095401 

1441187 

1836806 

2283997 

Processes 

612 

920 

1292 

1728 

2228 

2792 

throt t led version 

N 

6 

7 

8 

9 

10 

11 

S1 
m 

113716 

165074 

226588 

298328 

380152 

472441 

S ( x )  

4698 

6342 

8593 

1116~ 

1400: 

1712~ 

7V 

24.2 

26.0 

26.4 

26.7 

27.1 

27.6 

TSO 

628 

826 

945 

1064 

1380 

1152 

MSO 

1494 

1903 

2403 

2862 I 

3544 

4363 

TimSt  

550597 

794607 

1090701 

1432852 

1823772 

2263461 

ANs 

34 

35 

33 

36 

35 

38 

Processes 

612 

920 

1292 

1728 

2228 

2792 

Table 2: Simulation Results for Simple 

N 7r TSO MSO ~-t TSOt  MSOt 

14 389.6 28621 21467 27.5 2318 6580 

16 506.3 38935 28975 27.4 2994 7470 

18 634.6 50833 37619 27.7 3292 9748 

20 773.2 64315 47399 27.5 3909 9494 

Table 3: Results for Simple using the idealised simulator 
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