Preview
Unable to display preview. Download preview PDF.
References
Goto, M. & Grosshans, F.D.: Semisimple Lie Algebras. M. Dekker, New York & Basel 1978.
Greub, W.: Linear Algebra. 4th edition. GTM 23, Springer, New York 1981.
de Groote, H.F.: On varieties of optimal algorithms for the computation of bilinear mappings. I. The isotropy group of a bilinear mapping. Theoret. Comput. Sci. 7 (1978) 1–24.
de Groote, H.F.: Lectures on the Complexity of Bilinear Problems. LN Comput. Sci. 245, Springer, Berlin 1987.
de Groote, H.F. & Heintz, J.: A lower bound for the bilinear complexity of some semisimple Lie algebras. in: Algebraic Algorithms and Error Correcting Codes. Proc. AAECC-3, Grenoble 1985. LN Comput. Sci. 229 (1986) 211–222.
Humphreys, J.E.: Introduction to Lie Algebras and Representation Theory. 3rd printing revised. GTM 9, Springer, New York 1980.
Mirwald, R.: The algorithmic structure of sl(2,k). in: Algebraic Algorithms and Error Correcting Codes. Proc. AAECC-3, Grenoble 1985. LN Comput. Sci. 229 (1986) 274–287.
Strassen, V.: Vermeidung von Divisionen. J. Reine Angew. Math. 264 (1973) 184–202.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1987 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
de Groote, H.F., Heintz, J., Möhler, S., Schmidt, H. (1987). On the complexity of Lie algebras. In: Budach, L., Bukharajev, R.G., Lupanov, O.B. (eds) Fundamentals of Computation Theory. FCT 1987. Lecture Notes in Computer Science, vol 278. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-18740-5_39
Download citation
DOI: https://doi.org/10.1007/3-540-18740-5_39
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-18740-0
Online ISBN: 978-3-540-48138-6
eBook Packages: Springer Book Archive