Skip to main content

Is vision a pattern recognition problem?

  • Vision Versus Pattern Recognition
  • Conference paper
  • First Online:
Pattern Recognition (PAR 1988)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 301))

Included in the following conference series:

Abstract

It is argued that traditional pattern recognition methods are inadequate for the tasks confronting computer vision. In an effort to overcome their limitations, a new approach has been developed, in which the concept of pattern is replaced by the group-theoretical notions of representations and invariants. By applying these ideas to the symbolic representation of images, it is possible to derive some very general constraints on the effectiveness of symbolic descriptions from the structure of the image vector space and the transformations which act upon it. The theory is illustrated with some simple examples and then applied to a number of practical problems, including feature description, texture analysis and segmentation. The paper is concluded with a discussion of some generalisations and extensions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Duda, R. O., Hart, P. E., Pattern Classification and Scene Analysis, New York, Wiley, 1973.

    Google Scholar 

  2. Marr, D., Vision, San Francisco, Freeman, 1982.

    Google Scholar 

  3. Barrow, H. G., Tenenbaum, J. M., Computational Vision, Proc. IEEE, 69, 5, 572–595, 1981.

    Google Scholar 

  4. Rumelhart, D. E., McClelland, J. L., Parallel Distributed Processing Vol. 1, Cambridge, M.I.T., 1986.

    Google Scholar 

  5. —, PDP Vol. 2, Cambridge, M.I.T., 1986.

    Google Scholar 

  6. Granlund, G. H., In Search of a General Picture Processing Operator, Comp. Graphics and Image Proc., 8, 155–173, 1978.

    Google Scholar 

  7. Knutsson, H., Filtering and Reconstruction in Image Processing, Linköping Univ., Ph.D. Thesis, 1982.

    Google Scholar 

  8. Wilson, R., Knutsson, H., Granlund, G. H., The Operational Definition of the Position of Line and Edge, Proc. 6th Int'l Conf. on Patt. Rec., 846–849, Munich, 1982.

    Google Scholar 

  9. Wilson, R., Granlund, G. H., The Uncertainty Principle in Image Processing, IEEE Trans. on Patt. Anal. and Machine Intell., PAMI-6, 758–767, 1984.

    Google Scholar 

  10. Spann, M., Wilson, R., A Quad-tree Approach to Image Segmentation that Combines Statistical and Spatial Information, Patt. Recog., 18, 257–269, 1985.

    Article  Google Scholar 

  11. Wilson, R., Spann, M., The Finite Prolate Spheroidal Sequences and their Applications pt I, II. (Accepted for publication) IEEE Trans. on Patt. Anal. and Machine Intell., 1987.

    Google Scholar 

  12. Wilson, R., Spann, M., Image Segmentation and Uncertainty, Chichester, Research Studies Pr., 1988.

    Google Scholar 

  13. Wilson, R., Knutsson, H., Uncertainty and Inference in the Visual System, (Accepted for publication) IEEE Trans. on Sys. Man and Cybern., 1987.

    Google Scholar 

  14. Weyl, H., The Theory of Groups and Quantum Mechanics, New York, Dover, 1950.

    Google Scholar 

  15. Frei, W., Chen, C. C., Fast Boundary Detection: A Generalisation and a New Algorithm, IEEE Trans. Comp., C-26, 988–998, 1977.

    Google Scholar 

  16. Gabor, D., Theory of Communication, Proc. IEE, 93, 26, 429–441, 1946.

    Google Scholar 

  17. Canny, J., A Computational Approach to Edge Detection, IEEE Trans. Patt. Anal. and Machine Intell., PAMI-8, 679–698, 1986.

    Google Scholar 

  18. Nering, E. D., Linear Algebra and Matrix Theory (2nd Ed.), New York, Wiley, 1970.

    Google Scholar 

  19. Wilson, R., Knutsson, H., Uncertainty and Inference in the Visual System II: Motion and Stereopsis without Matching, To be published.

    Google Scholar 

  20. Adelson, E. H., Bergen, J. R., Spatiotemporal Energy Models for the Perception of Motion, J. Opt. Soc. Am. A, 2, 284–299, 1985.

    PubMed  Google Scholar 

  21. Watson, A. B., Ahumada, A. J., Model of Human Visual-Motion Sensing, J. Opt. Soc. Am. A, 2, 322–342, 1985.

    PubMed  Google Scholar 

  22. Knutsson, H., A Tensor Representation of 3-d Structure, IEEE ASSP Soc. Workshop on Multidimensional S.P., Noordwijkerhout, Holland, 1987.

    Google Scholar 

  23. Granlund, G. H., Knutsson, H., Contrast of Structural and Homogeneous Representations, in Physical and Biological Processing of Images, ed. O. Braddick, Berlin, Springer-Verlag, 282–303, 1983.

    Google Scholar 

  24. Jauch, J. M., Foundations of Quantum Mechanics, Reading, Addison-Wesley, 1968.

    Google Scholar 

  25. Calway, A. D., Hierarchical Descriptors for Nonstationary 1 and 2-d Signal Processing, Warwick Univ. Comp. Sci. Rept. no. RR108, 1987.

    Google Scholar 

  26. Clippingdale, S., Wilson, R., Quad-tree Image Estimation: a New Image Model and its Application to Minimum Mean Square Error Image Restoration, Proc. 5th Scand. Conf. on Image Anal., 699–706, Stockholm, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. Kittler

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wilson, R. (1988). Is vision a pattern recognition problem?. In: Kittler, J. (eds) Pattern Recognition. PAR 1988. Lecture Notes in Computer Science, vol 301. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-19036-8_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-19036-8_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-19036-3

  • Online ISBN: 978-3-540-38947-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics