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ABSTRACT 

Conditional rewriting has been studied both from the point of view of algebraic data type 
specifications and as a computational paradigm combining logic and functional programming. An 
important issue, in either case, is determining whether a rewrite system has the Church-Rosser, or 
confluence, property. In this paper, we settle negatively the question whether "joinabihty of critical 
pairs" is, in general, sufficient for confluence of terminating conditional systems. We review known 
sufficient conditions for confluence, and also prove two new positive results for systems having critical 
pairs and arbitrarily big terms in conditions. 

1. Introduction 

Conditional term rewriting systems arise naturally in the algebraic specification of data types; they 
have been studied largely from this perspective [Zhang-Rtmy-85, Bergstra-Klop-86, Kaplan-87]. When 
a system is noetherian and confluent, it defines a normal-form algebra which is initial. With various res- 
trictions on the form and content of conditional rules, e.g. only one occurrence of any variable on the 
left-hand side, some useful conditions for confluence have been obtained, In this paper, we extend those 
results. 

Recently, conditional rewriting systems have been shown to provide a natural computational para- 
digm combining logic and functional programming [Fribourg-85, Goguen-Meseguer-86, Dershowitz- 
Plaisted-87]. A program is a set of conditional rules and a computation attempts to find a substitution 
that makes two terms provably equal in the underlying theory. The operational mechanisms are rewrit- 
ing and narrowing: rewriting provides for the functional part and narrowing for the logic-programming 
ability to construct solutions. For the completeness of interpreters based on those mechanisms, some 
form of confluence is needed. In this context, it is especially useful to weaken any restrictions on the 
form of rules as much as possible, and still have syntactic tests for confluence. Unfortunately, as we 
show here, there is a limit to the extent to which such restrictions can be lifted. 

* This research was supported in part by the National Science Foundation under Grant DCR 85-13417. 
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The next section presents the basic notions. In Section 3 we give an interesting counter-example to 
show that critical pair joinability is, in general, insufficient for confluence. Sections 4 and 5 contain our 
positive results on confluence. We conclude with suggestions of  extensions and applications. 

2. Conditional Rewriting 

A positive conditional equation is a (first-order) formula of the form 

p l  = q l  A ' "  Apn =qn D l =r,  

where l, r, p 1, q 1 ..... Pn, are qn are (first-order) terms built from some set F of function symbols and set 
X of variables. The formula is (implicitly) universally quantified. The subformulae p 1 = q 1 ..... Pn = qn 
(n > 0) are called conditions; an equation is unconditional i f  n = 0. We will abbreviate conditions by 
writing, instead, ~ = ~ : l = r. 

A conditional rewrite rule is an oriented conditional equation, written 

~ $ ~ : t  ~ r, 

or just p $ q : l ~ r, where the symbol .1. signifies equality and has an operational meaning described 
below. A conditional rewrite system is a set of such rules. For example, the following is a system for 
computing the relation < on natural numbers: 

x < y  $ t t :  

0 < 0  ~ tt 
s(x)<_O ~ f f  

s ( x ) < s ( y )  ---) x < y  
x <_s(y) ~ tt 

Conditional systems are used to compute by replacing an instance of  a left-hand side 1 by the correspond- 
ing instance of  the right-hand side r, provided the corresponding instance of  the condition p ,l, q holds. 

For a given system, we define the rewrite ( ~ )  and join ($) relations on terms, as follows: Let 

p $ q : l ~ r be a rule, s be a term, 7r be a position of a subterm in s, and cr be a substitution (a mapping 
from variables to terms, extended to a morphism from terms to terms). Then we say that the term 
s [/c]n, that is, the term s with an instance I~  of  the left-hand side l at position n, rewrites to the term 
s[r~]n (s with r a  in place of  l~) i f  p ~  and q o  each rewrite in zero or more steps to the identical term; in 
that case, we say that ~ is a feasible substitution for the rule. We write s --) t, if s rewrites to t in one 
step; s --~ t, if  s rewrites to t in zero or more steps, i.e. i f  t is derivable from s; s ,1, t, if  s ~ w and t 

w for some term w; and s ~ t, i f  s --~ t, but no rewrite applies to t, i.e. the normal form t is deriv- 
able from s. For the above example, we have 0 < s ( 0 ) - - ~  tt using the last rule, since the condition 
0 -< 0 $ tt is achieved by the first rule. See [Dershowitz-Okada-Sivakumar-87] for an analysis of the 
impact of different operational semantics for conditions. 

Two important restrictions on conditional rules are the following: 

Definition 1. A conditional rewrite system is left-linear i f  a variable occurs at most 
once in a left-hand side l of  each rule ff $ ~ : l ---) r. 
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Definition .2. A conditional rewrite system is normal i f  every component of  the right 
part ~ of  the condition of  each rule ~ $ ~ : l ---> r is a ground (variable-free) normal 
form. 

Note that for normal systems the condition/5 $ ~ is equivalent to/5 ---} ~. 

Any conditional system can be transformed into a normal, but not left-linear, one, by introducing 

new operators, eq and true, writing conditions/5 $ ~ as eq(~,'~) $ true, and adding the non-left-linear 
unconditional rule eq (x,x) --~ true. A system that is both left-linear and normal is called Type IIIn in 
[Bergstra-Klop-86]. 

A rewrite relation --> is said to be noetherian if  there is no infinite chain of terms 
tt  , tz,  " " " ,tk, " " " such that ti ~ ti+l for all i> l .  A rewrite relation is confluent i f  whenever two terms, s 
and t, are derivable from a term u, then a term v is derivable from both s and t. In symbols: 

* --{ _c ~ * *~---, where ~ is the inverse of  the derivability relation ---{. It is locally confluent, if 
s --~ v and t ~ v for some v whenever u --> s and u ---> t (in one step). 

2.1. Disjoint peaks 

If  a term u[s,t] contains subterms, s and t, neither of  which is a subterm of the other, and each 
rewrites to another term, say s ---> s '  and t ~ t', then the resultant terms, u[s',t] and u[s, tq, rewrite in 

one step to the same term, u[s',t']. The situation u[s',t] 4-- u[s,t] ---> u[s, tq is called a disjoint peak. 
See Fig. 2.1. 

2.2. Critical peaks 

Throughout this paper, variables in different rules (or in different instances of the same rule) are 
considered to be distinct, renaming, as necessary. 

Definition 3. If  the left-hand side g of  a rule p '  $ q '  : g --> d unifies, via most general 
substitution ~, with a non-variable subterm s at position n in a left-hand side 1 of  a rule 
p $ q : 1 ---> r, then the conditional equation 

(p~,p'c)  = (qcs, q'o) : lcY[dc]n = r(y 

is called a critical pair of the two rules, where Ics[d~]~ is obtained by replacing s in l by 
d and applying c.  

The situation 

lo[dcr]n ~-- Icy --, rcs 

is called a critical overlap, and, for any context u and substitution x less general than 6, 

u[l'c[dx]n] 4-- u[Ix] --~ u[rx] 

is called a critical peak. See Fig. 2.2. 

Definition 4. A critical pair c = d : s = t is feasible, and the corresponding overlap is 
feasible, i f  there is a substitution ~ for which c o  ,1, do .  A trivial critical pair is one for 
which s is identical to t. A system is non-overlapping i f  it has no feasible, non-trivial 
critical pairs. 
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z~ A.-.. 

Figure 2.1. Disjoint peak. 

Figure 2.2. Joinable (ShaUow-joinable) critical overlap. 

" .  *g 

Figure 2.3. Variable overlap. 
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Definition 5. A critical pair c = d : s = t is joinable if  s ~  $ t~  for any substitution 
such that c6,1. d r .  

Infeasible critical pairs are vacuously joinable and trivial ones are trivially joinable. 

The depth of a rewrite is the depth of recursive evaluations of conditions needed to determine that 
the matching substitution is feasible. Formally, the depth of an unconditional rewrite is 0; the depth of a 
rewrite using a conditional rule p ,1. q : 1 ~ r and substitution ~ is depthfpaSqcs) + 1; the depth of a n- 
step derivation s --~ t is the maximum of the depths of each of the n steps; the depth of a "val ley" s ,1. t, 
joining at a term v, is the maximum of the depths of s ~ v and t ~ v; and the depth of a zero-step 
derivation or valley is 0. We write s ~ t if s ---> t and the depth of the rewrite step is no more than k. 

k 

Similarly s --~ t will mean that the maximum depth in that derivation is at most k. For example, 
k 

0 < 0 ---> tt, 0 <s (0 )  ---> tt, and0  <sn(O) ---> tt, for all m>n. 
0 1 m 

Definition 6. A critical pair c = d : s = t, obtained from a critical overlap s ~ u ~ t 
is shaIIow-joinable, if, for each substitution ~ such that c o  $dff ,  there exists a term v 
such that s ~  ~ v and t~  ~ v, where m is the depth of u ---> s and n is the depth of 

n rtl 

u ---> t. A conditional rewrite system is shallow-joinable if each of its critical pairs is. 

In other words, every critical pair of a shallow-joinable system joins with the corresponding depths less 
or equal to those of the critical overlap. (See Fig. 2.2.) In particular, critical pairs between unconditional 
rules must be unconditionally joinable. 

2.3. Variable peaks 

Let x be a feasible substitution for a rule p" $ q" : g ~ d and let ~ be a feasible substitution for a 
rule p $ q : t --> r under which some variable x in I is mapped to a term c[gx], containing an instance of 
g. Then, the term l a  can be rewritten in two different ways, to r a  and la[gx], as depicted in Fig. 2.3. 
This is what we will call a variable peak. 

If I is non-linear in x, then each of the remaining occurrences of c[gx] in l g  may be rewritten until a 
term l~" is obtained, where a" is same as ~ except that x is mapped to c[dx]. Similarly, if r is non-linear 
i n x  then we need additional rewrites to get r a  --~ re ' .  When dealing with unconditional rewriting sys- 
tems, variable peaks are always joinable, since l a '  ---> r~ ' .  But for conditional systems, ~" must be feasi- 
ble, i.e. po" $ qff' must hold. This is not always the case, even if critical pairs are joinable, as the 
counter-examples of the next section demonstrate. 

3. Counter.examples 

In this section, we present non-confluent systems that are counter-examples to attempts at extending 
theorems for unconditional systems to the analogous conditional case. 

Unconditional systems are locally confluent, if all their critical pairs are joinable. On the other 
hand, Example A [Bergstra-Klop-86] below shows that non-normal, non-noetherian conditional systems 
need not be locally confluent, even if they are left-linear and non-overlapping. In that example, the term 
b has many normal forms, including a and f (a), despite the lack of critical pairs. 

As will be shown in Section 5, noetherian conditional systems with no critical pairs are locally 
confluent, and, as is well known, for noetherian systems, local confluence implies confluence. Unfor- 
tunately: 
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I b ---> f(b) I 
x S f (x) : f (x) ---> a 

Example A. Left-linear and non-overlapping, but not normal. 

h ( f  (x)) S k(g(b)) " 

c ~ k ( f  (a)) 
c ---> k(g(b)) 
a ~ b 

h (x ) --> k (x ) 
h f f  (a)) --> c 

f (x) ~ g (x) 

Example B. Left-linear and normal, but not shallow-joinable. 

b S b :  a -~ b 
b S b  : h(x) ~ k(x) 
b S b  : h ( f (a ) )  ---> p(a)  

p(b)  -.-) k ( f  (a)) 
q(b) .-~ k(g(a)) 

x S a  • p(x)  --) q(x) 
h ( f ( x ) )  S k ( g ( b ) ) :  f ( x )  --> g(x)  

Example C. Left-linear and shallow-joinable, but not normal. 

eq (x,x) ~ true 
b S b :  a ~ b 
b $ b : h(x) ~ k(x) 
b,[,b : h ( f (a ) )  --> p(a)  

p(b)  ---) k ( f  (a)) 
q(b) -.~ k(g(a))  

eq(x,a) S true : p(x)  --~ q(x)  
h ( f  (x)) $ k(g(b)) :  f (x) -~ g(x)  

Example D. Normal and shaUow-joinable, but not left-linear. 
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Proposition. There exists a noetherian, non-locally-confluent, conditional rewrite sys- 
tem all o f  whose critical pairs are joinable. 

This is demonstrated by Example B, in which, though all four critical pairs are joinable, the term f (a) 
has two normal forms, f (b) and g (b). Note that the unconditional critical pair obtained by rewriting c in 
two ways is joinable only using the conditional rule, i.e. it is not shallow-joinable; see Fig. 3.1. With 
slight modifications, one obtains counter-examples C and D, showing that no combination of two of the 
following three factors sutfices for confluence: left-linear, normal, and shallow-joinable. From these 
examples, it is clear that we need relatively strong restrictions on rewrite systems to guarantee 
confluence. In the next section, we show that combining all three factors does, in fact, yield confluence 
for noetherian systems. 

4. Confluence of normal systems 

In this section, we consider conditions that ensure that a normal, left-linear system is confluent. 
Such systems arise naturally in pattern-directed functional languages, when the different cases are 
constructor-based and mutually exclusive. 

Bergstra and Klop have shown the following for conditional systems that are not necessarily noeth- 
erian: 

Theorem 1 [Bergstra-Klop-86]. A left-linear, normal conditional rewrite system is 
confluent, if  it is non-overlapping. 

(Though we have weakened their definition of non-overlapping to allow infeasible overlaps, the result 
still holds.) This is analagous to the standard result that left-linear unconditional systems with no critical 
pairs are confluent (see, e.g. [Huet-80]), and can be extended somewhat by severely limiting the way in 
which critical pairs join. 

We give a similar result for overlapping systems in which critical pairs are shallow-joinable. For 
this, we must require that the system be noetherian. 

Theorem 2. A noetherian, left-linear, normal conditional rewrite system is confluent, i f  
all its critical pairs are shallow joinable. 

From the counter-examples of the previous section, one can see that this is optimal. 

This theorem is a corollary of the following: 

Lemma 1. Let  R be a noetherian conditional rewrite system that is left-linear, normal 
and shallow-joinable. Then, i f  u --~ s and u ---{ t, there exists a term v such that s --~ v 

m n n 

and t ---~ v. 
m 

Proof. The proof is by induction on the pair (m+n,  u) with respect to the (lexicographic combina- 
tion of the) natural ordering of natural numbers and the noetherian relation ---r on terms. 

Let u---~s'---{ s and u--* t ' --~ t. That is, u is first rewritten at position ~ to s'  using rule 
m m n n 

p $ N : l --~ r with depth no greater than m, and at position rg to t" using q ,1, M : g --~ d with maximum 
depth n (M and N are normal forms). We show that s '  and t '  are joinable with appropriate depths at 
some term w. As in the Diamond Lemma for unconditional systems, two inductions (at the peaks, s '  and 
t ') show that s and t are also joinable with suitable depths. 
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f hOe(a)) - h(f(b)) 

2-----.-------__ h (g (a)) 
, k ( f ( a ) )  . k q ( b ) )  

h (g k (g (a)) 

Figure 3,1, Critical pairs of Example B. 

Figure 4.1. Normal, left-linear, variable overlap case (Lemma 1). 

/h,/.~ 
L 

A A  
by induction (s ~, gx) by induction (s --~ s') 

~ A  

V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  - 

Figure 5,1, Proper subterm case (I_emma 2). 
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If the peak at u is disjoint, then s '  and t '  join at a term w (which is u after both rewrites). That is, 
t '  ~ w (by rewriting at g') and s" ~ w (by rewriting at g). 

n m 

If the peak is critical, then, by the shatlow-joinable assumption, there is a term w such that t '  --~ w 
n 

ands'---)  w. 
m 

This leaves only the variable peak case. Without loss of generality, let ~ be above ~'. Thus, some 
variable x in I matches a subterm c[gx] which rewrites to c[dx]. Let o" be the same as the substitution t~ 
used in rewriting u ~ s', except that x is mapped to c[dx]. As seen in Fig. 4.1, because R is left-linear, 
the subterm of t '  at ~ is actually lt~'. Furthermore, s" --~ u [ r d ] ~  = w, by rewriting all (zero or more) 

n 

occurrences o f g ~  in s '  to dt~. It remains to show that lo" ---rro" is feasible. Since the system is normal, 
m 

• t . . . .  we have pt~ ---r N, as xs required, by Induction from the shallower peak po" ~ p ~  --~ N. [] 
m - 1  n m - 1  

5. Confluence ofjoinable systems 

In this section, we make no restrictions on the joinability of the critical pairs. We also do not insist 
on normal conditions or left-linearity. Under certain circumstances, we are able to prove that such sys- 
tems are confluent as long as all their critical pairs are joinable. This is close in spirit to the result for 
unconditional systems. 

Definition 7. A system is decreasing i f  there exists a well-founded ordering >, contain- 
in~ the proper subterm ordering ~,, such that s>t whenever s ~ t and, for each rule 
p $ q : I --~ r and substitution ~, lcr > pt~ and l c  > qty. 

This is stronger than the noetherian requirement. Examples B-D are not decreasing, since the left-hand 
side f (x) is a proper subterm of the term h (f (x)) in the condition. 

Theorem 3 ['Dershowitz-Okada-Sivakumar-87]. A decreasing conditional rewrite sys- 
tem is confluent, if all its feasible critical pairs are joinable. 

This generalizes results in [Kaplan-87] and [Jouannaud-Waldmann-86], but the proof is essentially the 
same. 

In our last result, we allow arbitrary terms in the condition, but insist that overlaps between left- 
hand sides do not occur at proper subterms of the overlapped left-hand side. In particular, non- 
deterministic pattern-directed languages, with no nested defined function symbols in the patterns, meet 
this requirement. 

Definition 8. A critical pair is an overlay if it is obtained from two two left-hand sides 
that unify at their roots. 

In our original example, the critical pair s (x) < y = tt : x < y = tt between the rules s (x) < s (y) ~ x < y 
andx  -<y $ n :x  <s (y )  ~ n i s  an overlay. 

Theorem 4. A noetherian conditional rewrite system is confluent, if all its critical pairs 
are joinable overlays. 

This may be useful for designing completion procedures, because of the absence of restrictions on 
conditions. It is worth noting that, in particular, any conditional system that is noetherian and non- 
overlapping is confluent, as is the case for unconditional systems. 
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A A  A , A  
1 ' 

i j o ~ t .  ov.r~y ~ , 

u. / / : . , <  . . . . . . . . . . .  ~ . . . . . . . . . . . . . . . . . . . . .  > . 1 : , , , ,  

A A A : A  A : A  
I by induction (u -~ u') I t by induction (s -~ ro) , 

• ~, ~, 
V ................ :~ .......................... ~ ......... :a.. • • 

Figure 5.2. Overlay case (Lemma 2). 

i t , , ,  

i 

f 

i pCdJ, qo'(by induction) 
t 

i 

I 

I by induction (u ~ u3 

Figure 5.3. Variable overlap above (Lemma 2). 
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This theorem is a consequence of the following: 

Lemma 2. Let u[t]rl, where H is a set of positions, denote the term u with each subterm 
at a position in H replaced by t. Let R be a noetherian conditional rewrite system in 
which all critical pairs are joinable overlays, f l u  --~ v and s --~ t for any terms u, v, s, 
andt, then u[t]rl $ v. 

Proof. We show that if u[s]ri--~ v and s--~ t, then u[t]rl S v, by induction on the triple 
n 

( s ,  n ,  u [s]), where the first component is compared using the union of the noetherian rewrite relation 
and the proper subterm relation ~,, the second as a natural number, and the third by the rewrite rela- 

tion. 

If u = v or s = t, then we are done. Suppose s --> s" ~ t. If we can show that u[s']rl $ v, then by 
induction it will follow that u[ t]n $ v, since s" is less (vis-a-vis -~ ) than s. 

If the first rewrite s -~ s" occurs at a proper subterm gx of s, then by induction on the first com- 
ponent, we have u[s']n $ v. See Fig. 5.1. 

Otherwise, we may suppose that s is g a  and s" is d~, for some rule p" $ q" : g -~ d. Let 
u[s] -~ u" --~ v, with the first step via rule p $ q : l ~ r at position ~. If this is a disjoint peak (i.e. if 

n n 

is neither above nor below any position in H), then u[s']rl rewrites (at position ~) to u'[s']rl. Since u '  is 
smaUer than u, we have that u ' [ s ' ]n  $ v. Thus, u[s']Fi --> u'[s']n $ v. 

If u '  ~-- u[s]r l  --~ u [s ']n is a critical peak, then it must be an overlay and s = g% = la .  Critical 
pairs are joinable, so let s'=dx---~ w and r a - -~  w, for some w. Then we have that 
u" = u [rt~]n -J  u[r~]rl. By induction on the last component, we have that u [ r a ] n  $ v; by induction on 
the first, we get u[w]rl $ v. Thus, u[s']n --~ u[w]ri  $ v. This case is depicted in Fig. 5.2. 

The remaining case is that of a variable overlap, either above or in some s. Let ~ be above s; that 
is, some variable x in I matches a term c [s]n, containing any number of occurrences of s. Let a" be the 
same as the substitution ~ used to rewrite u ~ u ' ,  except that x is mapped instead to c[s']n,. Now, 
u[s ' ]n  ~ u[lo']rl,,, by rewriting any additional occurrences of x in I that were not included in II. To 
show that lo" --~ ra ' ,  we need to show that po" $ q~'. Let eq be a binary operator not appearing in any 
rule, and consider the derivation eq(pa, q~) ~ eq(w,w), known to exist for some w by virtue of the fact 

n - 1  

that pcr $ q~. We also have p ~  --> p ~  and q~  --~ qo" by application of s --~ t at occurrences of s in the 
substitution parts. By induction on the second component, we have eq(po',qoO $ eq(w,w), from which 
it follows (there being no rules for eq) that p~" $ qcr'. Thus, u[s']rl --~ u[rt~]rr, $ v. This is illustrated 
in Fig. 5.3. 

Similarly, i f ~  is inside some s, we have u[sqn -4 u[dx'] $ v, as shown in Fig. 5.4. Here x' is like 
the substitution x used to rewrite s ~ s', but maps the variable in g to c[rtJ] instead of to c[lt~]. The 
condition p'x" $ q'x', needed to show that u" -J  u[gx']n ~ u[dz ' ]n,  can be shown by induction on the 
first component, since It~ is a proper subterm of s. [] 
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l 

' by induction (s -4 dx') ' 

Figure 5,4, Variable overlap below (Lemma 2). 

6. Conclusion 

We have explored two different restrictions on critical pairs of conditional rewrite systems, namely 
shallow joinability and overlays only, and proved confluence results for systems meeting those restric- 
tions. Our proofs show that, for conditional systems, the notions of confluence, local-confluence, and 
joinable critical pairs can not be neatly disentangled. In particular, the noetherian condition was needed 
to show that a system is locally confluent if all critical pairs are shallow joinable. We have also 
presented counter-examples which show that all our restrictions are necessary. 

We have only given examples of systems not containing variables in the condition that do not also 
appear on the left-hand side. But in the programming context, at least, one would certainly like to allow 
rules such as: 

( x  < y , y < z ) $ ( tt  , t t  ) : x < z --> tt, 

where y is a "new" variable, or like: 

f i b ( x )  $ < y  , z >  : f i b ( s ( x ) )  --> < y + z  , y > ,  

where the right-hand side also has an occurrence of the new variables, y and z. 

Even with new variables, the proofs of Theorems 2 and 4 should go through without difficulty. But, 
operationally, rewriting is more difficult now, since new variables in the conditions must be solved for. 
Thus, to rewrite an instance l a  of a left-hand side, an interpreter must first find a sa t i s f y i ng  substitution x 
for the new variables in the condition p $ q such that pox joins qo 'x ,  and then replace lff by rcrx. One 
way to enumerate solutions (for decreasing and confluent systems) is via n a r r o w i n g .  Unfortunately, it is 
undecidable, in general, whether such a substitution exists. 

Note, also, that with new variables on the right, a rule may non-trivially overlay itself. For exam- 
ple, a rewrites to f (b) a n d f  (c) with the system 
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p ( x ) $ t t  : a -4 f (x ) 
p ( b ) -4  tt 
p (c) -4 t t  

In general, a rule with new fight-hand side variables can rewrite (in one step) to an infinite number of 
different terms (i.e. even finite systems may not be "locally finite"). 

To handle systems not meeting any of the known critical pair criteria, superposition (i.e. narrowing) 
of left-hand sides on conditions must also be considered. For example, given Example B, it might be 
nice to generate the following confluent unconditional system: 

c - 4  k ( g ( b ) )  
a - 4  b 

h (x ) -4 k (x ) 
f (b) -~ g(b)  

With this system, all unconditional equational consequences of Example B have "rewrite" proofs. This 
is an active area of research, the results of which may be particularly i~seful from the programming point 
of view. 
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