
Confluence of Conditional Rewrite Systems*

Nachum Dershowitz I, Mitsuhiro Okada 2, and G. Sivakumar 1

1 Department of Computer Science
University of Illinois at Urbana-Champaign

Urbana, Illinois 61801, U.S.A.

2Departrnent of Computer Science
Concordia University

Montreal, Quebec H3G 1M8, Canada

ABSTRACT

Conditional rewriting has been studied both from the point of view of algebraic data type
specifications and as a computational paradigm combining logic and functional programming. An
important issue, in either case, is determining whether a rewrite system has the Church-Rosser, or
confluence, property. In this paper, we settle negatively the question whether "joinabihty of critical
pairs" is, in general, sufficient for confluence of terminating conditional systems. We review known
sufficient conditions for confluence, and also prove two new positive results for systems having critical
pairs and arbitrarily big terms in conditions.

1. Introduction

Conditional term rewriting systems arise naturally in the algebraic specification of data types; they
have been studied largely from this perspective [Zhang-Rtmy-85, Bergstra-Klop-86, Kaplan-87]. When
a system is noetherian and confluent, it defines a normal-form algebra which is initial. With various res-
trictions on the form and content of conditional rules, e.g. only one occurrence of any variable on the
left-hand side, some useful conditions for confluence have been obtained, In this paper, we extend those
results.

Recently, conditional rewriting systems have been shown to provide a natural computational para-
digm combining logic and functional programming [Fribourg-85, Goguen-Meseguer-86, Dershowitz-
Plaisted-87]. A program is a set of conditional rules and a computation attempts to find a substitution
that makes two terms provably equal in the underlying theory. The operational mechanisms are rewrit-
ing and narrowing: rewriting provides for the functional part and narrowing for the logic-programming
ability to construct solutions. For the completeness of interpreters based on those mechanisms, some
form of confluence is needed. In this context, it is especially useful to weaken any restrictions on the
form of rules as much as possible, and still have syntactic tests for confluence. Unfortunately, as we
show here, there is a limit to the extent to which such restrictions can be lifted.

* This research was supported in part by the National Science Foundation under Grant DCR 85-13417.

32

The next section presents the basic notions. In Section 3 we give an interesting counter-example to
show that critical pair joinability is, in general, insufficient for confluence. Sections 4 and 5 contain our
positive results on confluence. We conclude with suggestions of extensions and applications.

2. Conditional Rewriting

A positive conditional equation is a (first-order) formula of the form

p l = q l A ' " Apn =qn D l =r,

where l, r, p 1, q 1 Pn, are qn are (first-order) terms built from some set F of function symbols and set
X of variables. The formula is (implicitly) universally quantified. The subformulae p 1 = q 1 Pn = qn
(n > 0) are called conditions; an equation is unconditional i f n = 0. We will abbreviate conditions by
writing, instead, ~ = ~ : l = r.

A conditional rewrite rule is an oriented conditional equation, written

~ $ ~ : t ~ r,

or just p $ q : l ~ r, where the symbol .1. signifies equality and has an operational meaning described
below. A conditional rewrite system is a set of such rules. For example, the following is a system for
computing the relation < on natural numbers:

x < y $ t t :

0 < 0 ~ tt
s(x)<_O ~ f f

s (x) < s (y) ---) x < y
x <_s(y) ~ tt

Conditional systems are used to compute by replacing an instance of a left-hand side 1 by the correspond-
ing instance of the right-hand side r, provided the corresponding instance of the condition p ,l, q holds.

For a given system, we define the rewrite (~) and join ($) relations on terms, as follows: Let

p $ q : l ~ r be a rule, s be a term, 7r be a position of a subterm in s, and cr be a substitution (a mapping
from variables to terms, extended to a morphism from terms to terms). Then we say that the term
s [/c]n, that is, the term s with an instance I~ of the left-hand side l at position n, rewrites to the term
s[r~]n (s with r a in place of l~) i f p ~ and q o each rewrite in zero or more steps to the identical term; in
that case, we say that ~ is a feasible substitution for the rule. We write s --) t, if s rewrites to t in one
step; s --~ t, if s rewrites to t in zero or more steps, i.e. i f t is derivable from s; s ,1, t, if s ~ w and t

w for some term w; and s ~ t, i f s --~ t, but no rewrite applies to t, i.e. the normal form t is deriv-
able from s. For the above example, we have 0 < s (0) - - ~ tt using the last rule, since the condition
0 -< 0 $ tt is achieved by the first rule. See [Dershowitz-Okada-Sivakumar-87] for an analysis of the
impact of different operational semantics for conditions.

Two important restrictions on conditional rules are the following:

Definition 1. A conditional rewrite system is left-linear i f a variable occurs at most
once in a left-hand side l of each rule ff $ ~ : l ---) r.

33

Definition .2. A conditional rewrite system is normal i f every component of the right
part ~ of the condition of each rule ~ $ ~ : l ---> r is a ground (variable-free) normal
form.

Note that for normal systems the condition/5 $ ~ is equivalent to/5 ---} ~.

Any conditional system can be transformed into a normal, but not left-linear, one, by introducing

new operators, eq and true, writing conditions/5 $ ~ as eq(~,'~) $ true, and adding the non-left-linear
unconditional rule eq (x,x) --~ true. A system that is both left-linear and normal is called Type IIIn in
[Bergstra-Klop-86].

A rewrite relation --> is said to be noetherian if there is no infinite chain of terms
tt , tz, " " " ,tk, " " " such that ti ~ ti+l for all i> l . A rewrite relation is confluent i f whenever two terms, s
and t, are derivable from a term u, then a term v is derivable from both s and t. In symbols:

* --{ _c ~ * *~---, where ~ is the inverse of the derivability relation ---{. It is locally confluent, if
s --~ v and t ~ v for some v whenever u --> s and u ---> t (in one step).

2.1. Disjoint peaks

If a term u[s,t] contains subterms, s and t, neither of which is a subterm of the other, and each
rewrites to another term, say s ---> s ' and t ~ t', then the resultant terms, u[s',t] and u[s, tq, rewrite in

one step to the same term, u[s',t']. The situation u[s',t] 4-- u[s,t] ---> u[s, tq is called a disjoint peak.
See Fig. 2.1.

2.2. Critical peaks

Throughout this paper, variables in different rules (or in different instances of the same rule) are
considered to be distinct, renaming, as necessary.

Definition 3. If the left-hand side g of a rule p ' $ q ' : g --> d unifies, via most general
substitution ~, with a non-variable subterm s at position n in a left-hand side 1 of a rule
p $ q : 1 ---> r, then the conditional equation

(p~,p'c) = (qcs, q'o) : lcY[dc]n = r(y

is called a critical pair of the two rules, where Ics[d~]~ is obtained by replacing s in l by
d and applying c.

The situation

lo[dcr]n ~-- Icy --, rcs

is called a critical overlap, and, for any context u and substitution x less general than 6,

u[l'c[dx]n] 4-- u[Ix] --~ u[rx]

is called a critical peak. See Fig. 2.2.

Definition 4. A critical pair c = d : s = t is feasible, and the corresponding overlap is
feasible, i f there is a substitution ~ for which c o ,1, do . A trivial critical pair is one for
which s is identical to t. A system is non-overlapping i f it has no feasible, non-trivial
critical pairs.

34

z~ A.-..

Figure 2.1. Disjoint peak.

Figure 2.2. Joinable (ShaUow-joinable) critical overlap.

" . *g

Figure 2.3. Variable overlap.

35

Definition 5. A critical pair c = d : s = t is joinable if s ~ $ t~ for any substitution
such that c6,1. d r .

Infeasible critical pairs are vacuously joinable and trivial ones are trivially joinable.

The depth of a rewrite is the depth of recursive evaluations of conditions needed to determine that
the matching substitution is feasible. Formally, the depth of an unconditional rewrite is 0; the depth of a
rewrite using a conditional rule p ,1. q : 1 ~ r and substitution ~ is depthfpaSqcs) + 1; the depth of a n-
step derivation s --~ t is the maximum of the depths of each of the n steps; the depth of a "val ley" s ,1. t,
joining at a term v, is the maximum of the depths of s ~ v and t ~ v; and the depth of a zero-step
derivation or valley is 0. We write s ~ t if s ---> t and the depth of the rewrite step is no more than k.

k

Similarly s --~ t will mean that the maximum depth in that derivation is at most k. For example,
k

0 < 0 ---> tt, 0 <s (0) ---> tt, and0 <sn(O) ---> tt, for all m>n.
0 1 m

Definition 6. A critical pair c = d : s = t, obtained from a critical overlap s ~ u ~ t
is shaIIow-joinable, if, for each substitution ~ such that c o $dff , there exists a term v
such that s ~ ~ v and t~ ~ v, where m is the depth of u ---> s and n is the depth of

n rtl

u ---> t. A conditional rewrite system is shallow-joinable if each of its critical pairs is.

In other words, every critical pair of a shallow-joinable system joins with the corresponding depths less
or equal to those of the critical overlap. (See Fig. 2.2.) In particular, critical pairs between unconditional
rules must be unconditionally joinable.

2.3. Variable peaks

Let x be a feasible substitution for a rule p" $ q" : g ~ d and let ~ be a feasible substitution for a
rule p $ q : t --> r under which some variable x in I is mapped to a term c[gx], containing an instance of
g. Then, the term l a can be rewritten in two different ways, to r a and la[gx], as depicted in Fig. 2.3.
This is what we will call a variable peak.

If I is non-linear in x, then each of the remaining occurrences of c[gx] in l g may be rewritten until a
term l~" is obtained, where a" is same as ~ except that x is mapped to c[dx]. Similarly, if r is non-linear
i n x then we need additional rewrites to get r a --~ re ' . When dealing with unconditional rewriting sys-
tems, variable peaks are always joinable, since l a ' ---> r~ ' . But for conditional systems, ~" must be feasi-
ble, i.e. po" $ qff' must hold. This is not always the case, even if critical pairs are joinable, as the
counter-examples of the next section demonstrate.

3. Counter.examples

In this section, we present non-confluent systems that are counter-examples to attempts at extending
theorems for unconditional systems to the analogous conditional case.

Unconditional systems are locally confluent, if all their critical pairs are joinable. On the other
hand, Example A [Bergstra-Klop-86] below shows that non-normal, non-noetherian conditional systems
need not be locally confluent, even if they are left-linear and non-overlapping. In that example, the term
b has many normal forms, including a and f (a), despite the lack of critical pairs.

As will be shown in Section 5, noetherian conditional systems with no critical pairs are locally
confluent, and, as is well known, for noetherian systems, local confluence implies confluence. Unfor-
tunately:

36

I b ---> f(b) I
x S f (x) : f (x) ---> a

Example A. Left-linear and non-overlapping, but not normal.

h (f (x)) S k(g(b)) "

c ~ k (f (a))
c ---> k(g(b))
a ~ b

h (x) --> k (x)
h f f (a)) --> c

f (x) ~ g (x)

Example B. Left-linear and normal, but not shallow-joinable.

b S b : a -~ b
b S b : h(x) ~ k(x)
b S b : h (f (a)) ---> p(a)

p(b) -.-) k (f (a))
q(b) .-~ k(g(a))

x S a • p(x) --) q(x)
h (f (x)) S k (g (b)) : f (x) --> g(x)

Example C. Left-linear and shallow-joinable, but not normal.

eq (x,x) ~ true
b S b : a ~ b
b $ b : h(x) ~ k(x)
b,[,b : h (f (a)) --> p(a)

p(b) ---) k (f (a))
q(b) -.~ k(g(a))

eq(x,a) S true : p(x) --~ q(x)
h (f (x)) $ k(g(b)) : f (x) -~ g(x)

Example D. Normal and shaUow-joinable, but not left-linear.

37

Proposition. There exists a noetherian, non-locally-confluent, conditional rewrite sys-
tem all o f whose critical pairs are joinable.

This is demonstrated by Example B, in which, though all four critical pairs are joinable, the term f (a)
has two normal forms, f (b) and g (b). Note that the unconditional critical pair obtained by rewriting c in
two ways is joinable only using the conditional rule, i.e. it is not shallow-joinable; see Fig. 3.1. With
slight modifications, one obtains counter-examples C and D, showing that no combination of two of the
following three factors sutfices for confluence: left-linear, normal, and shallow-joinable. From these
examples, it is clear that we need relatively strong restrictions on rewrite systems to guarantee
confluence. In the next section, we show that combining all three factors does, in fact, yield confluence
for noetherian systems.

4. Confluence of normal systems

In this section, we consider conditions that ensure that a normal, left-linear system is confluent.
Such systems arise naturally in pattern-directed functional languages, when the different cases are
constructor-based and mutually exclusive.

Bergstra and Klop have shown the following for conditional systems that are not necessarily noeth-
erian:

Theorem 1 [Bergstra-Klop-86]. A left-linear, normal conditional rewrite system is
confluent, if it is non-overlapping.

(Though we have weakened their definition of non-overlapping to allow infeasible overlaps, the result
still holds.) This is analagous to the standard result that left-linear unconditional systems with no critical
pairs are confluent (see, e.g. [Huet-80]), and can be extended somewhat by severely limiting the way in
which critical pairs join.

We give a similar result for overlapping systems in which critical pairs are shallow-joinable. For
this, we must require that the system be noetherian.

Theorem 2. A noetherian, left-linear, normal conditional rewrite system is confluent, i f
all its critical pairs are shallow joinable.

From the counter-examples of the previous section, one can see that this is optimal.

This theorem is a corollary of the following:

Lemma 1. Let R be a noetherian conditional rewrite system that is left-linear, normal
and shallow-joinable. Then, i f u --~ s and u ---{ t, there exists a term v such that s --~ v

m n n

and t ---~ v.
m

Proof. The proof is by induction on the pair (m+n, u) with respect to the (lexicographic combina-
tion of the) natural ordering of natural numbers and the noetherian relation ---r on terms.

Let u---~s'---{ s and u--* t ' --~ t. That is, u is first rewritten at position ~ to s' using rule
m m n n

p $ N : l --~ r with depth no greater than m, and at position rg to t" using q ,1, M : g --~ d with maximum
depth n (M and N are normal forms). We show that s ' and t ' are joinable with appropriate depths at
some term w. As in the Diamond Lemma for unconditional systems, two inductions (at the peaks, s ' and
t ') show that s and t are also joinable with suitable depths.

38

f hOe(a)) - h(f(b))

2-----.-------__ h (g (a))
, k (f (a)) . k q (b))

h (g k (g (a))

Figure 3,1, Critical pairs of Example B.

Figure 4.1. Normal, left-linear, variable overlap case (Lemma 1).

/h,/.~
L

A A
by induction (s ~, gx) by induction (s --~ s')

~ A

V . - . -

Figure 5,1, Proper subterm case (I_emma 2).

38

If the peak at u is disjoint, then s ' and t ' join at a term w (which is u after both rewrites). That is,
t ' ~ w (by rewriting at g') and s" ~ w (by rewriting at g).

n m

If the peak is critical, then, by the shatlow-joinable assumption, there is a term w such that t ' --~ w
n

ands'---) w.
m

This leaves only the variable peak case. Without loss of generality, let ~ be above ~'. Thus, some
variable x in I matches a subterm c[gx] which rewrites to c[dx]. Let o" be the same as the substitution t~
used in rewriting u ~ s', except that x is mapped to c[dx]. As seen in Fig. 4.1, because R is left-linear,
the subterm of t ' at ~ is actually lt~'. Furthermore, s" --~ u [r d] ~ = w, by rewriting all (zero or more)

n

occurrences o f g ~ in s ' to dt~. It remains to show that lo" ---rro" is feasible. Since the system is normal,
m

• t we have pt~ ---r N, as xs required, by Induction from the shallower peak po" ~ p ~ --~ N. []
m - 1 n m - 1

5. Confluence ofjoinable systems

In this section, we make no restrictions on the joinability of the critical pairs. We also do not insist
on normal conditions or left-linearity. Under certain circumstances, we are able to prove that such sys-
tems are confluent as long as all their critical pairs are joinable. This is close in spirit to the result for
unconditional systems.

Definition 7. A system is decreasing i f there exists a well-founded ordering >, contain-
in~ the proper subterm ordering ~,, such that s>t whenever s ~ t and, for each rule
p $ q : I --~ r and substitution ~, lcr > pt~ and l c > qty.

This is stronger than the noetherian requirement. Examples B-D are not decreasing, since the left-hand
side f (x) is a proper subterm of the term h (f (x)) in the condition.

Theorem 3 ['Dershowitz-Okada-Sivakumar-87]. A decreasing conditional rewrite sys-
tem is confluent, if all its feasible critical pairs are joinable.

This generalizes results in [Kaplan-87] and [Jouannaud-Waldmann-86], but the proof is essentially the
same.

In our last result, we allow arbitrary terms in the condition, but insist that overlaps between left-
hand sides do not occur at proper subterms of the overlapped left-hand side. In particular, non-
deterministic pattern-directed languages, with no nested defined function symbols in the patterns, meet
this requirement.

Definition 8. A critical pair is an overlay if it is obtained from two two left-hand sides
that unify at their roots.

In our original example, the critical pair s (x) < y = tt : x < y = tt between the rules s (x) < s (y) ~ x < y
andx -<y $ n :x <s (y) ~ n i s an overlay.

Theorem 4. A noetherian conditional rewrite system is confluent, if all its critical pairs
are joinable overlays.

This may be useful for designing completion procedures, because of the absence of restrictions on
conditions. It is worth noting that, in particular, any conditional system that is noetherian and non-
overlapping is confluent, as is the case for unconditional systems.

40

A A A , A
1 '

i j o ~ t . ov.r~y ~ ,

u. / / : . , < ~ . > . 1 : , , , ,

A A A : A A : A
I by induction (u -~ u') I t by induction (s -~ ro) ,

• ~, ~,
V :~ ~ :a.. • •

Figure 5.2. Overlay case (Lemma 2).

i t , , ,

i

f

i pCdJ, qo'(by induction)
t

i

I

I by induction (u ~ u3

Figure 5.3. Variable overlap above (Lemma 2).

41

This theorem is a consequence of the following:

Lemma 2. Let u[t]rl, where H is a set of positions, denote the term u with each subterm
at a position in H replaced by t. Let R be a noetherian conditional rewrite system in
which all critical pairs are joinable overlays, f l u --~ v and s --~ t for any terms u, v, s,
andt, then u[t]rl $ v.

Proof. We show that if u[s]ri--~ v and s--~ t, then u[t]rl S v, by induction on the triple
n

(s , n , u [s]), where the first component is compared using the union of the noetherian rewrite relation
and the proper subterm relation ~,, the second as a natural number, and the third by the rewrite rela-

tion.

If u = v or s = t, then we are done. Suppose s --> s" ~ t. If we can show that u[s']rl $ v, then by
induction it will follow that u[t]n $ v, since s" is less (vis-a-vis -~) than s.

If the first rewrite s -~ s" occurs at a proper subterm gx of s, then by induction on the first com-
ponent, we have u[s']n $ v. See Fig. 5.1.

Otherwise, we may suppose that s is g a and s" is d~, for some rule p" $ q" : g -~ d. Let
u[s] -~ u" --~ v, with the first step via rule p $ q : l ~ r at position ~. If this is a disjoint peak (i.e. if

n n

is neither above nor below any position in H), then u[s']rl rewrites (at position ~) to u'[s']rl. Since u ' is
smaUer than u, we have that u ' [s ']n $ v. Thus, u[s']Fi --> u'[s']n $ v.

If u ' ~-- u[s]r l --~ u [s ']n is a critical peak, then it must be an overlay and s = g% = la . Critical
pairs are joinable, so let s'=dx---~ w and r a - -~ w, for some w. Then we have that
u" = u [rt~]n -J u[r~]rl. By induction on the last component, we have that u [r a] n $ v; by induction on
the first, we get u[w]rl $ v. Thus, u[s']n --~ u[w]ri $ v. This case is depicted in Fig. 5.2.

The remaining case is that of a variable overlap, either above or in some s. Let ~ be above s; that
is, some variable x in I matches a term c [s]n, containing any number of occurrences of s. Let a" be the
same as the substitution ~ used to rewrite u ~ u ' , except that x is mapped instead to c[s']n,. Now,
u[s ']n ~ u[lo']rl,,, by rewriting any additional occurrences of x in I that were not included in II. To
show that lo" --~ ra ' , we need to show that po" $ q~'. Let eq be a binary operator not appearing in any
rule, and consider the derivation eq(pa, q~) ~ eq(w,w), known to exist for some w by virtue of the fact

n - 1

that pcr $ q~. We also have p ~ --> p ~ and q~ --~ qo" by application of s --~ t at occurrences of s in the
substitution parts. By induction on the second component, we have eq(po',qoO $ eq(w,w), from which
it follows (there being no rules for eq) that p~" $ qcr'. Thus, u[s']rl --~ u[rt~]rr, $ v. This is illustrated
in Fig. 5.3.

Similarly, i f ~ is inside some s, we have u[sqn -4 u[dx'] $ v, as shown in Fig. 5.4. Here x' is like
the substitution x used to rewrite s ~ s', but maps the variable in g to c[rtJ] instead of to c[lt~]. The
condition p'x" $ q'x', needed to show that u" -J u[gx']n ~ u[dz ']n, can be shown by induction on the
first component, since It~ is a proper subterm of s. []

42

l

' by induction (s -4 dx') '

Figure 5,4, Variable overlap below (Lemma 2).

6. Conclusion

We have explored two different restrictions on critical pairs of conditional rewrite systems, namely
shallow joinability and overlays only, and proved confluence results for systems meeting those restric-
tions. Our proofs show that, for conditional systems, the notions of confluence, local-confluence, and
joinable critical pairs can not be neatly disentangled. In particular, the noetherian condition was needed
to show that a system is locally confluent if all critical pairs are shallow joinable. We have also
presented counter-examples which show that all our restrictions are necessary.

We have only given examples of systems not containing variables in the condition that do not also
appear on the left-hand side. But in the programming context, at least, one would certainly like to allow
rules such as:

(x < y , y < z) $ (tt , t t) : x < z --> tt,

where y is a "new" variable, or like:

f i b (x) $ < y , z > : f i b (s (x)) --> < y + z , y > ,

where the right-hand side also has an occurrence of the new variables, y and z.

Even with new variables, the proofs of Theorems 2 and 4 should go through without difficulty. But,
operationally, rewriting is more difficult now, since new variables in the conditions must be solved for.
Thus, to rewrite an instance l a of a left-hand side, an interpreter must first find a sa t i s f y i ng substitution x
for the new variables in the condition p $ q such that pox joins qo 'x , and then replace lff by rcrx. One
way to enumerate solutions (for decreasing and confluent systems) is via n a r r o w i n g . Unfortunately, it is
undecidable, in general, whether such a substitution exists.

Note, also, that with new variables on the right, a rule may non-trivially overlay itself. For exam-
ple, a rewrites to f (b) a n d f (c) with the system

43

p (x) $ t t : a -4 f (x)
p (b) -4 tt
p (c) -4 t t

In general, a rule with new fight-hand side variables can rewrite (in one step) to an infinite number of
different terms (i.e. even finite systems may not be "locally finite").

To handle systems not meeting any of the known critical pair criteria, superposition (i.e. narrowing)
of left-hand sides on conditions must also be considered. For example, given Example B, it might be
nice to generate the following confluent unconditional system:

c - 4 k (g (b))
a - 4 b

h (x) -4 k (x)
f (b) -~ g(b)

With this system, all unconditional equational consequences of Example B have "rewrite" proofs. This
is an active area of research, the results of which may be particularly i~seful from the programming point
of view.

44

REFERENCES

[Bergstra-Klop-86] Bergstra, J. A., and Klop, J.W. "Conditional rewrite rules: Confluency and termina-
tion", JCSS 32, pp. 323-362, 1986.

[Dershowitz-Okada-Sivakumar-87] Dershowitz, N., Okada, M., and Sivakumar, G. "Canonical condi-
tional rewrite systems", submitted.

[Dershowitz-P1aisted-87] Dershowitz, N., and Plaisted, D. A. "Equational programming". In Machine
Intelligence 11: The logic and acquisition of knowledge (J. E. Hayes, D. Michie, and J.
Richards, eds.), Clarendon Press, London, 1987.

[Fribourg-85] Fribourg, L. "SLOG: A logic programming language interpreter based on clausal superpo-
sition and rewriting". Proceedings of the 1985 Symposium on Logic Programming, Bos-
ton, MA (July 1985), pp. 172-184.

[Goguen-Meseguer-86] Goguen, L A., and Meseguer, J. "EQLOG: Equality, types and generic modules
for logic programming". In Logic Programming: Functions, relations and equations (D.
DeGroot and G. Lindstrom, eds.), Prentice-Hall, Englewood Cliffs, NJ, pp. 295-363,
1986.

[Huet-80] Huet, G. "Confluent reductions: Abstract properties and applications to term rewriting sys-
tems", J. ACM 27, pp. 797-821.

[Jouannaud-Waldmann-86] Jouannaud, J.-P., and Waidmann, B. "Reductive conditional term rewriting
systems". Proceedings of the Third IFIP Working Conference on Formal Description of
Programming Concepts, Ebberup, Denmark.

[Kaplan-87] Kaplan, S. "Simplifying conditional term rewriting systems: Unification, termination and
confluence", Journal of Symbolic Computation, to appear.

[Zhang-R6my-85] Zhang, H., and R6my, J. L. "Contextual rewriting". Proceedings First International
Conference on Rewriting Techniques and Applicatiop~, Dijon, France (May 1985), pp.
46-62 (available as Vol. 202, Lecture Notes in Computer Science, Springer, Berlin [Sep-
tember 1985]).

