
Accommodating Heterogeneity

J o h n Zahor jan , E d w a r d D. Lazowska , H e n r y M. Levy ,
Dav id Notk in , and J an Sanis lo

Department of Computer Science
University of Washington
Seattle, Washington 98195

ABSTRACT

The Heterogeneous Computer Systems project at the University of Washington has over the past two years
designed and implemented a software infrastructure to accommodate heterogeneous systems. We have addressed
an environment consisting of a potentially large number of different system types but only a few instances of each
type. Such an environment arises naturally in research and other settings where individual systems are obtained
for the specialized services they provide. Our goal is not to mask the heterogeneous nature of the systems by
imposing a standard interface on them, but rather to provide loose integration through a set of network services.
In particular, we provide remote procedure call, naming, filing, remote computation, and mail services accessible
from all system types.

1. Introduction

This paper describes the software infrastructure designed and implemented by the Heterogeneous Com-

puter Systems (HCS) project at the University of Washington [Black et al. 1985, 1987]. This work has two

goals:

• We hope to decrease the cost of adding a new type of system to an existing computing environment.

• We hope to increase the set of common services that users in a heterogeneous environment can expect

to share.

We wish to achieve these goals under very weak assumptions about the nature of the individual systems.

In our environment - an academic department with a significant experimental research component -

heterogeneity is a fact of life. Experimental computer research is often best conducted on a high-level testbed

(e.g., Lisp and Smalltalk machines, multiprocessor workstations). Further, such research often produces unique

hardware/software architectures (e.g., prototype distributed systems, special-purpose image analysis hardware).

Our own environment consists of more than 15 significantly different hardware/software systems. Many other

environments, both academic and industrial, have similar composition.

The loose intemonnection that today accompanies heterogeneity poses several significant problems. One

problem is inconvenience. An individual either must be a user of multiple systems or else must accept the conse-

quences of isolation from various aspects of the local computing environment. A second proNem is expense.

The hardware and software of the computing environment are not effectively amortized, making it much more

costly than necessary to conduct a specific effort on the system to which it is best suited. A third problem is

diminished effectiveness. On many projects, substantial effort must be diverted to address the proNems of hetero-

geneity. Time-consuming hacks by scientists and engineers who should be doing other work are the rule, rather

than the exception.

This material is based on work supported by the National Science Foundation under Grants DCR-8352098, DCR-8420945.
and CCR~8611390. by an IBM Faculty Development Award, by the Xerox Corporation University Grants Program, and by
the Digital Equipment Corporation External Research Program.

90

These problems exist despite the widespread availability o f communication protocols such as TCP. Users

require a diverse set o f services and applications; they also require the ability to construct new services and appli-

cations readily. The file transfer and remote terminal programs that currently are the standard ways of accessing

foreign machines are insufficient, and constructing new services and applications on top of protocols such as TCP

is too difficult.

In addressing these problems, the specific focus of the HCS project is heterogeneous environments with

two key characteristics:

• There are a large number of system types with a small number of instances of certain of these types.

• Each system exists because its unique properties make it well-suited to some specific application.

Filing

Network 5ervices
I t Remote Mail Computation

Underlying Facilities

Figure 1: Relationship of HCS Facilities and Services

These characteristics, while certainly not universal, are widespread, and have significant implications: it

must be possible to incorporate a new system type into the environment at low cost and without masking the

unique properties for which that system was obtained. This leads us to an approach that we refer to as " loose

integration through shared network services". As illustrated in Figure 1, two underlying facilities - remote pro-

cedure call and naming - support a set of key network services that are adapted to the demands of a heterogene-

ous environment - filing, mail, and remote computation. Our approach can be characterized in a bit more detail

as follows:

• We provide a set o f network services that are made available to a heterogeneous collection o f client

systems through the use o f remote procedure call and naming facilities that we also provide. The ser-

vices we have selected are those that are fundamental to cooperation and sharing.

• In both the services and the underlying facilities, we attempt not to legislate standards but rather to

accommodate multiple standards. This allows the integration o f unmodified or minimally modified

systems into our computing environment.

• We do not attempt to provide existing programs with transparent access to services. The primary ma-

son is that we have so many system types that performing and maintaining the modifications necessary

for transparency would require an effort out o f proportion to the benefits obtained,

• We focus on system heterogeneity rather than language heterogeneity. Just as we cannot generally jus-

tify the effort to support transparent access to services, we cannot commit to providing complete

91

integration of programs written in different languages.

Although each network service was designed to meet specific goals, a number of common themes exist:

. Emulation. We do not integrate heterogeneous systems by defining a new standard that all systems

must support. Instead, we build subsystems that can relatively easily emulate a range of existing facili-

ties. We facilitate this emulation by factoring the design of subsystems into easily replaced parts.

• Localized Translation. Different systems store and interpret shared information in different ways.

With many system types, centralizing the responsibility for all combinations of translations is

unmanageable. Instead, we place this responsibility for translating between representations in the

hands of the entities that know the most about it. One specific kind of translation - the type conver-

sions that arise in every facility and service - are automatically managed for the user to the fuUest

extent possible.

• Procrastination. We make decisions, such as those involved in binding, as late as possible. This per-

mils us to place less specific information in the code itself, making it easier to accommodate new sys-

tems.

• Complex Services, Simple Clients. To allow the creation of new clients at significantly reduced costs,

the clients must be kept simple. Thus, the bulk of the processing must be performed by the servers.

The HCS project thus has a coherent approach to dealing with a particular style of heterogeneity. There

are a number of other styles of heterogeneity, each of which demands a somewhat different solution. MIT's Pro-

ject Athena [Balkovich et al. 1985, Gettys 1984] and CMU's ITC Project [Morris et al. 1986] are two highly visi-

ble heterogeneity-related efforts. Each seeks to accommodate heterogeneity through coherence: enforcing high-

level uniformity in software while permitting implementation on diverse hardware. Both projects rely primarily

on UNIX 1. Project Athena is standardizing on an applications interface, the ITC on a centralized file service.

Another major effort is the MIT LCS Styx project (formerly called the Common System), which attempts to share

programs written in substantially different languages such as Lisp and CLU. The LCS group hopes to provide a

"semantic bridge" between these languages. The UCLA Distributed Systems Laboratory is concerned with

integrating computational resources with a high degree of transparency. In one approach, they developed LOCUS

[Popek et al. 1981, Walker et al. 1983], a single distributed operating system that runs on multiple, heterogeneous

machines (including VAXes, IBM 4300s, and IBM PC-ATs). In an alternative approach, they are developing

Transparent Operating Systems Bridges [Gray 1986] with the goal of integrating machines with dissimilar operat-

ing systems. Finally, GM MAP [Kaminski 1986] is a major industrial effort that involves top-to-bottom standard-

ization in a specific application domain - manufacturing.

In the remaining sections we present an overview of each of the five services that comprise the HCS.

2. Heterogeneous Remote Procedure Call

The overall objective of the HCS project is to develop an environment in which heterogeneous computer

systems share a small set of key services that provide "loose integration." Network communication is the sine

qua non of this effort.

Although some form of networking capability is possessed by all of the systems that are likely to be of

interest to us, no single protocol is shared by all of them. This absence of protocol standardization is one serious

impediment to accommodating heterogeneity.

IUNIX is a trademark of A'vr Bell Laboratories.

92

A second, equally serious problem is that, until recently, commercially available network implementa-

tions provided only low-level services. Higher level functions are generally encapsulated in application programs

such as Telnet, PTP, and NSChat. However, the absence of low-level protocol standardization makes it particu-

larly important that application code be insulated from this layer. Furthermore, building applications on top of

Iow-level services is beyond the capabilities of most programmers.

One attractive approach to providing communication is remote procedure call (RPC) [Birrell & Nelson

1984]. RPC supports communication among application programs while relieving them of concern for data

representation, transport protocol details, etc. As much as possible, an RPC facility provides a mechanism across

the communication network that has the same syntax and semantics as local procedure calls within the application

program's high-level language.

We have identified five major components of an RPC facility: compile-time support (including the pro-

gramming language, the interface description language (IDL), and the stub generator), the bind-time protocol, and

the three call-time protocols - transport, control, and data representation. Existing RPC facilities make

significantly different choices in each of these areas. Although in principle these choices are orthogonal to one

another, in practice they are intertwined in each implementation. As a result, the various existing RPC facilities

not only are incapable of communicating with one another, but also are difficult to modify to make such commun-

ication possible.

Inspired by DEC SRC R_PC facility [Birrell et al. 1985], we have attempted to modularize the components

of our HCS RPC facility (HRPC) [Bershad et al. 1987] by specifying clean interfaces among them. An HRPC

client or server and its associated stub can view each of the remaining components as "black boxes" that can be

mixed and matched. The set of protocols to be used is determined dynamically at bind-time. This design meets

two key objectives. First, we are able to emulate existing RPC facilities by providing appropriate black boxes.

Second, we are able to employ existing software (e.g., transport protocols) easily in building an RPC facility for a

new system that does not have a native facility.

A simple example will help to illustrate our approach. We designed a server that retums a list of the users

logged in to the machine on which it resides. We implemented this server on three different systems: on Xerox

computers using the standard Xerox RPC (i.e., the XNS protocol for transport and the Courier protocols for bind-

ing, data representation, and control) [Xerox 1981], on Sun computers using the standard Sun RPC with UDP

datagrams (i.e., the UDP protocol for transport, the XDR data representation standard, and the Sun protocols for

binding and control) [Sun 1985a, 1985b], and on VAX computers using the standard Sun RPC with TCP (i.e., the

TCP protocol for transport, the XDR data representation standard, and the Sun protocols for binding and control).

We then implemented an HRPC client of this service. This single client can bind to each server using that

server's own native binding protocol and can communicate with each server using that server's own native RPC;

it is possible to make a sequence of calls to different servers, each call emulating a different native RPC. Perfor-

mance is comparable to that of the native RPC facilities.

The Call-Time Organization of HRPC.

The basis of the HRPC factorization is an abstract model of how any RPC facility works, expressed

through the calI-time components. To isolate the actual implementation of each of these components, we define a

procedural interface to each. These interfaces allow an HRPC stub and any combination of control protocol, data

representation, and transport protocol components to function together. In addition to location information, a data

structure called a Binding explicitly represents the choices for these three components as separate sets of pro-

cedure pointers. Calls to the component routines are made indirectly via these procedure pointers. By fiUing in a

93

Binding with different values for these procedure pointers, a single HRPC program can communicate with a wide

variety of conventional RPC programs.

The Bind-Time Organization of HRPC.

The first step in binding is naming. For binding, naming is the process of translating the client-specified

server name into the network address of the host on which the server resides. The second step is activation.

Some RPC designs assume the server is already active; others require that a server process be created dynami-

cally. The third step is port determination. The network address produced during naming does not generally

suffice for addressing the server, since multiple servers may be running on a single host. Because of this, each

server is typically allocated its own communications port, which, together with the network address, uniquely

identifies the server.

Consider the case of an HRPC client importing a server written using some existing conventional RPC.

The client specifies a two-part string name containing the type (e.g., "FileService") and instance (i.e, a host

name) of the service it wishes to import. To honor this request, the HRPC binding subsystem first queries the

HCS Name Service (described in the next section), retrieving a Binding Descriptor. Each Binding Descriptor

contains a machine-independent description of the information needed to construct the machine-specific and

address-space-specific Binding. In particular, a Binding Descriptor consists of a designator indicating which

control component, data representation component, and transport component the service uses, a network address,

a program number, a port number, and a flag indicating whether the binding protocol for this partSc~ar server

involves indirection through a binding agent. The remainder of the Binding must now be completed in accor-

dance with the information in the Binding Descriptor. To do this, the procedure pointer parts of the Binding are

set to point to the routines to handle the particular control protocol, data representation, and transport protocol

understood by the server.

The HRPC Stub Generator.

The HRPC system uses a stub generator for an extended version of the Courier IDL [Xerox 1981], based

on the generator written at Comell [Johnson 1985]. The "code generator" portion of the stub generator was

modified to support the HRPC interface. The stub routines are generated in the C programming language. Our

stub generator supports additions to the Courier IDL, the most important of which is an escape mechanism known

as a USERPROC with which users can provide their own marshalling routines for complicated data types, such

as those containing pointer references.

Evaluation.

HRPC's unique hypothesis is that the most effective way to provide basic communication with a diverse

set of systems is to emulate the native RPC facilities of these systems. The major intellectual task in HRPC was

to defme interfaces between the various RPC components, making this emulation feasible. The resulting modu-

larization has the added benefit of making a subset of HRPC an excellent candidate for porting to a new system

that lacks a native RPC, since any existing building-blocks can be employed.

A natural concern is that the degree of modularity necessary in HRPC might significantly increase execu-

tion time; however, initial benchmarks show that HRPC is competitive with the native RPC facilities being emu-

lated. In Table 1 we present the results of two benchmark programs. The first, called NULL, measures the

elapsed time of a parametefless remote call and retum. The second, called BYTES, measures the elapsed time to

transfer a string containing 37,000 characters. For each of these benchmark programs we compare the perfor-

mance of the Sun RPC facility to that of HRPC emulating the Sun RPC, and we compare the performance of the

Xerox Courier RPC facility to that of HRPC emulating Courier. Times are expressed in milliseconds. The per-

formance of HRPC is essentially identical to the perfonnance of the native RPC facility in each case. Recall,

94

though, that for each benchmark, the HRPC client that calls the Sun server is exactly the same executable file as

the HRPC client that calls the Courier server.

RPC Facility Benchmark

Client Server NULL BYTES

Courier Courier 22 5243

HRPC Courier 22 4825

Sun Sun 27 625

HRPC Sun 28 620

Table 1 - Comparison of HRPC and Native RPC Call Times (msec.)

3. Naming

The purpose of a heterogeneous name service is to manage a global name space, that is, a set of names

whose associated data can be accessed in a uniform manner from anywhere in the HCS. This global name space

allows sharing of names among clients on different systems and is crucial in providing any degree of location

independent execution. It is also necessary for convenient use of the HCS by human users, as it permits the

exchange of names across system boundaries.

Two primary goals must be met by a name service for our environment. First, existing applications on

the individual subsystems of the HCS should continue to run unaltered. Second, new applications written to use

our global service should have access to the naming information contained in new subsystems attached to the

HCS without requiring recompilation or relinking.

In creating a name service that meets these goals, there are three significant problems that arise due to

heterogeneity. The first concems the syntax of names. Because the separate subsystems of the HCS are likely to

have conflicting name syntaxes, it is not possible to impose a single syntax for the global name space that would

be "natural" on all systems. The global name space should make the minimum possible demands on users to

adjust to an unfamiliar syntax.

The second problem is that o f the name conflicts that occur when two or more systems containing an

identical name are combined. For instance, both the Xerox and UNIX systems might contain the name Notkin

and store data on the mail destination for that user. While this name is unambiguous when issued in an environ-

ment consisting of only one of the two systems, it is ambiguous when they are combined.

The final problem is the difficulty of simultaneously meeting the two goals outlined above. Continued

execution of existing applications requires that names be accessible in the existing name services local to the indi-

vidual subsystems. Graceful integration of new systems into the global name space might most naturally be

accomplished by reregistering the data contained in the local name services in the global service. However, such

copying carries with it the difficult problem of maintaining consistency between the Iocal and global copies.

We have constructed a global name service, the HNS [Schwartz 1987, Schwartz et al. 1987], to address

these problems. Primarily because of the consistency problems just noted, we have chosen not to perform reregis-

tration in the HNS, but to use the local name services directly to store the data associated with the global name

space. The problems implied by this are discussed in the next section, which describes the design of the HNS.

95

Structure of the HNS.

The HNS provides a global name space accessible in a uniform manner throughout the heterogeneous

environment, and a facility to associate data with those names. Rather than directly storing the data associated

with a global name, that data is maintained in an existing name service, where it is associated with some name

local to that name service. Viewed at the highest level, the HNS provides mappings between the global name for

an object and the name of that object in its local system, while the local name service performs the final name-to-

data mappings.

Each HNS name contains two parts, a context and an individual name. The context portion of an HNS

name identifies all or part of the specific name service used to store data associated with that name. The indivi-

dual name component determines the corresponding local name with which the data is associated in that service.

While the HNS does not impose any restrictions on the syntax of the individual names, it is required that there be

an invertible mapping between individual names within a context and the names of objects in the local name ser-

vice.

This approach for constructing HNS names ensures that these names are conflict-free. Because the HNS

guarantees that only a single name service maintains information on objects in any one context, it is not possible

for distinct name services to create name conflicts in the HNS. Since each local name service guarantees the lack

of conflicts of its local names, and since the individual name to local name mapping is invertible, no single name

service can create a conflict within a context.

While the name syntax and data management scheme guarantee the absence of naming conflicts, they

create another significant problem as a side-effect. This problem is that the local name services may store

equivalent data in different formats or may store similar but not identical information of a particular type.

Ideally the HNS should insulate the client program from this semantic heterogeneity. In particular, it

would be inconvenient to require every client program accessing the HNS to understand the semantics of each

underlying name service and to be recompiled whenever a new subsystem type was added to the environment.

Instead, the HNS should provide a single data representation and semantics that are invariant under the addition

of new subsystems.

The HNS cannot relieve client programs of the burden of understanding the interfaces, formats, and data

semantics of the local name services without having some name-service-specific code to support this. In the HNS

this code is encapsulated in a set of HRPC-accessible routines called Name Semantics Managers (NSMs). Each

HNS query type is supported by a set of NSMs with identical interfaces, with one NSM for each local name ser-

vice. (Figure 2 contains a diagram of the logical structure of the HNS.) Because they are remote procedures,

NSMs can be added to the system while it is running without recompilation of any existing code. When a new

subsystem is added to the HNS, we construct NSMs for that subsystem, register these NSMs with the HNS, and

the data stored in them becomes available through the HNS.

I-INS Name Lookup Procedure.

Figure 2 shows the logical structure of the HNS and the process followed in satisfying an HNS request.

There are two phases. In the first, the client program calls the HNS using HRPC. The client passes the HNS a

name and a query type indicating the type of data desired about that name (e.g., mailbox or telephone number).

The HNS uses the query type and the context portion of the name to determine which NSM is in charge of han-

dling this query type for this context. The HNS then returns a Binding for that NSM to the client.

In the second phase of service, the client uses the retumed Binding to call the NSM, passing it the name

and query type parameters as well as any query type specific parameters. The NSM then obtains the requested

information, usually by interrogating the name service in which it is stored (although any technique, such as

96

HNS 'I

I [mm-yNSM/BINDtylm, ~ me,--,.1) i.j Client L NS"IIIm"') ~ NSII/CH I [q . e r y type,
(~ t a) - I I" (a e l 3)

Figure 2 - I-INS query processing

looking in a local file, may be employed). This information is then returned to the client.

Separating the NSMs from the HNS incurs the expense of an additional HRPC call over a scheme where

the NSMs are part of the HNS. However, this separation is essential to managing the long term growth of the

HCS, as it separates the query type specific interfaces from the HNS and moves them out to the more easily

managed NSMs.

While the above procedure indicates the logical process followed in satisfying HNS requests, an imple-

mentation need not be structured in an exactly analogous manner. For specific query types, it is possible to trade

a decrease in management convenience for an increase in performance by making particular NSMs local to either

the HNS or the client code. For instance, the NSMs that support HRPC binding might be contained in the same

address space as the HNS, permitting a client query to be satisfied with a single HRPC call from the client to the

I-INS and a single local procedure call from the HNS to the appropriate NSM. Alternatively, a particular client

might determine that some other query type is crucial to its performance. In that case copies of the corresponding

NSMs could be placed in the client's address space, so that local rather than remote calls to them can be made.

Prototype Implementation.

A prototype HNS implementation exists and supports a limited number of query types, including HRPC

binding, on the BIND [Terry et al. 1984, Zhou 1984] and Clearinghouse [Oppen & Dalal 1983] name services.

Table 2 presents measurements of the performance of the HNS as a function of various assumptions about cach-

ing effectiveness and colocation. Each row of the table represents a different way of linking the client, HNS, and

NSM components together. Components within brackets are linked locally to each other, and so can communi-

cate using local procedure call. Components separated by brackets are remote and must communicate using

HRPC. The different colocation schemes represent a tradeoff in efficiency against ease of management: tighter

binding implies better performance but more difficult software management problems when one of the com-

ponents has to change.

The two columns of the table represent the performance at the extremes of no cache hits (equivalent to no

caching being performed, since cache lookup time is very fast) and perfect cache hit. In the latter case both the

HNS and the NSM are assumed to have caches, the former storing NSM binding data and the latter query specific

data.

The table shows that despite the additional levels of indirection imposed by the HNS, the performance

can be quite good. For the sake of comparison, a single lookup to BIND costs roughly 27 ms., while a lookup to

the Clearinghouse costs about 156 ms. (BIND achieves this efficiency by keeping its data in main memory at all

times, and by avoiding some expensive procedures provided by the Clearinghouse, such as authentication.) The

table also points out that caching is far more important to performance than colocation. Measurements of cache

97

Colocation Cache Miss Cache Hit

[Client, HNS,NSMs]

[Clientl[HNS,NSMsl

[HNSI[Client,NSMs]

[NSMs][Client,HNS]

[Client] [HNS] [NSMs]

460

517

515

509

547

104

137

140

147

181

Table 2 - Performance of HRPC Binding (msec. elapsed time)

[] indicates colocation

hit ratios actually achieved in practice remain to be performed.

4. Filing

In most homogeneous file systems, the storage of data alone will allow information to be shared: the file

system accepts a stream of raw bytes and later delivers an identical stream. In a heterogeneous environment,

storage of data is not the same thing as storage of information. Consider a stream of data consisting of a sequence

of records, each containing an integer, a character, and a floating-point number, written by a Mesa program on a

Xerox workstation. To read this data into a Pascal program executing under VMS, transferring the bytes in not

enough. It is also necessary to address the heterogeneity of the programming languages, the operating systems,

and the underlying hardware. Language heterogeneity means that the record packing and padding characteristics

differ. Operating system heterogeneity means that the file system calls used by the two programs may differ, as

may the underlying file stmctures. Hardware heterogeneity means that the byte-ordering of integers and the

representation of floating-point numbers differ.

There have been two distinct heterogeneous file systems built as part of the HCS project. The first,

described more fully in [Black et al. 1987], provides an entirely new repository for those files to be made avail-

able network wide. This new repository provides features not available in some on some of the native systems,

such as file versioning and immutability. This file system is built of three components: a Type server, a File

server, and a mechanism for generating routines for accessing the files. Each file is kept in the format in which its

first version was received. The Type server keeps the IDL description of the records of the file. The File server

contains three logical modules: directory, reader, and writer. The last two are used to access the file, and are gen-

eric routines paranleterized by the type of the file record. The final component is a modification of the HRPC stub

generator to register new file types with the Type server and to produce type-specific client stubs. These special

stubs are required because of the lack of support for polymorphism in most programming languages.

In this design files and their type information must be explicitly registered to be made available to other

systems. Once registered, both whole file copy and per record read and write are available. A prototype imple-

mentation of this design has been completed and is in use for a number of applications.

The second file system is designed along the lines of the HNS. It differs from the first design in that no

registration of files need take place: all files available on the native file systems are available network wide (sub-

ject to authorization constraints). This is accomplished by having an agent on each system that serves as an

intermediary between the client and the file the client wishes to access. The HNS is used by the client to locate

this agent, and HRPC is used to communicate with it. The agent provides file read and write on a record basis.

98

A major difficulty in this design is the lack of the type information needed to convert data formats from

one system to another. Unlike the first design, there is no type information explicitly registered for the files to

which access is provided. Instead, the client is required to provide a description of the record format at file open.

This is generally reasonable since even in homogeneous systems the contents of a file cannot ordinarily be used

sensibly without prior knowledge of its format. The one significant function apparently lost by this design is the

ability to support generic functions, such as compare. In comparison to the first design, we have traded the ability

to operate more conveniently on a much larger set of files for the inability to perform some useful generic opera-

tions.

A prototype implementation of this second design is still underway. Our goal is to make both systems

available to our user community on a reliable basis to gain some feel for which approach is most useful in prac-

tice.

5. Mail

The goal o f the HCS mail system (HMS) is to accommodate heterogeneity, including the host-based

model (characterized by the UNIX and VMS mail services), while solving the problems of addressability, availa-

bility, and accessibility in the style of the server-based model (characterized by the Clearinghouse service).

Further, it should be relatively easy to accommodate new mail systems as they become available.

Our model o f a mail service consists of five components. Submission of mail occurs when a user directs

the service to send mail to one or more other users. Name resolution of a submitted message occurs when a pro-

gram decodes a symbolic address into a network address for use in forwarding or delivery. Transfer occurs when

a transport protocol is used to move the message to the next (intermediate or final) destination. Name resolution

is often responsible for selecting an appropriate transport protocol. Repeated name resolution, combined with the

associated transfers, provides the function of routing. Delivery occurs when the transport mechanism delivers the

message to its final destination. Receipt occurs when a program, acting for the recipient, takes the message from

the depository and hands it to the user for reading and perhaps archiving.

Submission and receipt of mail are usually the responsibility of a program called the user agent. Name

resolution, transfer, and delivery are usually the responsibility of a set of agents that comprise a mail transfer sys-

tem.

The HMS Approach.

Our basic approach is to use a server-based structure that employs the HNS for naming and HRPC for

communicating between mail servers and user agents. A basic principle is that the HMS will co-exist with exist-

ing mail services. Further, the existence of the HMS is transparent to users that continue to use existing,

unmodified user agents.

The basic structure of the HMS is to construct generic submit and receive functions that mask as much

heterogeneity as possible from the mail agents. These generic functions act like a query type in the HNS, provid-

ing a single interface for all user agents. For sending mail to and receiving mail from the outside world, we rely

on standard protocols. Hence, we focus on these functions for only the systems included in the HMS environ-

ment.

To support these functions we define a global alias service that contains entries for each HMS user.

These entries are similar to entries in Grapevine that indicate the set of mail servers on which the user receives

mail. However, they can include not only HMS mail servers in the list but also simple host addresses that desig-

nate machines on which the mail is to be delivered, usually into a well-known file name such as

/usr/spool/mail/notkin, The alias service also stores information about the delivery protocol to be used. The

99

alias service is constructed using the HNS.

When a user submits a mail message through a user agent we look up the addressee in the alias server.

We omit this step if we can tel1 from the syntactic structure of the name that it is a name for an external site.

Then, proceeding as in Grapevine [BirreU et al. 1982], we step through the list of elements returned for the

addressee. Depending on the type of the element (mail server or host address), we send the message using the

appropriate protocol, which was determined by querying the alias server. As soon as the message is successfully

sent to any mail server or host, the process is terminated. For messages with multiple addressees we condense the

actual outgoing messages appropriately.

When an HMS user attempts to read mail through an HMS user agent, the lookup is done in the alias

server for the user doing the reading. Each element in the returned list is then searched through the use of the

appropriate protocol. In the receipt case, all elements must be searched to ensure that all mail that was delivered

to any element is received.

This structure allows a UNIX user, for instance, to designate in the alias server that mail is to be retrieved

from several UNIX machines as well as from a set o f Xerox Clearinghouse mail servers. Similafly, mail can be

injected into HMS from any appropriately modified user agent; the benefits are that the host address of the reci-

pient need not be known and that if the primary receiving location is unavailable, mail will be delivered else-

where for later retrieval.

Our current prototype supports retrieval o f mail to the Xerox environment from the UNIX world. This is

similar in function to Cornell's Bridge system [Field], but the structure is intended to be more suitable for exten-

sion to other mail systems that could be added later. The global alias service is nearing completion; we later

intend to modify sendmail to use the service.

6. Remote Computation

One advantage of a distributed system is its potential for resource sharing. Availability of a single net-

work resource can remove the need for replicating that resource on each computer. A typical network includes

resources of several types, including computational resources such as high-performance processors, input/output

resources such as mass storage or printing facilities, and software resources such as special-purpose programs.

Remote computation is one means by which these resources can be accessed. An important issue is thus

the ease with which remote computation can be achieved to make such resources available to network users.

Remote computation facilities must solve a number of problems, regardless of the degree of hetero-

geneity. The creator o f the client interface must be able to pass command options to the service. The client must

send, or the server must request, fries that are needed for execution. Locating files may be complicated, particu-

larly when file names are not explicitly specified in the command string. For example, some text processors

maintain auxiliary files that describe the structure of a document; these are read if they exist and created other-

wise. More troublesome, there may be input requirements that become known only during execution.

Some problems in remote computation are more specific to heterogeneity. One fundamental problem is

the naming of objects. For example, the structure of file names may differ on the client and server machines.

This may include the syntax of file names, the specification of directories, and the specification of devices or even

machines on which those files reside. Conventions for naming may be different; compiling the program myprog

may produce a.out on one system and myprog.obj on another.

Even describing the service to execute is complicated by heterogeneity. For example, most application

programs permit the specification of options. The syntax and semantics of the options will differ on different sys-

tems; optimized compiler output may be specified by following the compile command with " - O " , with

100
"/opt imize", or even by selecting a menu item. In addition to the options specified when a program is mn, its

execution often depends on its environment - that is, contextual information provided by the user and the operat-

ing system, including logical names or aliases, a default directory, a directory search path, and some "invisible"

files used by the service for input and output. Each system has a different environment; these must be communi-

cated between the client and server.

Another problem typical o f any heterogeneous communication is translation of data, as has been

described earlier. Translation may occur on the client side, on the server side, or on both sides. A typical solution

is to standardize on-the-wire formats for data. This can be handled at a level below the application, as demon-

strated by our HRPC system.

Finally, error handling will differ on the client and server. In particular, error messages generated on the

server may be nonsense when read in the context o f the client. A remote computation system must be aware of

the possible error conditions so that they may be reported sensibly to the client.

THERE.

We have designed and prototyped a remote computation system called THERE: The HCS Environment

for Remote Execution [Bershad & Levy t987]. THERE is a facility for constructing remote execution clients and

servers in a heterogeneous network; it is similar in many ways to Maitre'D [Bershad 1985] and Summoner [Hag-

mann 1985]. The goal of this system is to simplify the addition of new network services and to aid the service

developer in handling some of the problems mentioned above, including communication of command informa-

tion, name translation, and file transfer.

The basic structure of THERE is shown in Figure 3. Both client and server execute copies of the THERE

interpreter - a generic front-end. On the client side, the interpreter provides the communications path to all avail-

able THERE network services. The interpreter parses the user's command line and sends any needed data to the

appropriate server. On the server side, the interpreter manages a remote computation session with all services

available on a particular node. The server-side interpreter receives requests from clients, establishes the appropri-

ate execution environment, and executes the service or spawns a task to do so. The server determines needed files

and requests them from the client through special function calls. File requests and file data are shipped using the

HRPC mechanism. Client and server interpreters are nearly identical with the exception of system-locaI functions

and the obvious knowledge of which role is being played.

l ine

r tR l~ Olm l

THERE I ~
Client

Interpreter HRPC -

4L

cr, c ~ t e l I

THERE
Service

lmcrpretcr

T

Figure 3 - Structure of THERE

To make a new service available on a THERE server machine, the service builder must first decide what

information is needed from clients, what processing will need to be done locally, what environment will be

needed for execution, and what data will be returned to the client. Based on these decisions, the service builder

codes a THERE Programming Language (TPL) program, which is a high-level description of the service. The

101

TPL program defines the information to be exchanged between server and client, the steps needed to process that

information, and the steps required to create an appropriate environment to execute the desired service. A dif-

ferent server-side TPL program must be created for each system type on which the service runs.

Similarly, a client "FPL program exists for each client system that can access a service. When a user

issues a remote computation request, the appropriate client TPL program is selected by the interpreter. That TPL

program processes the command line, gathers environmental information, defines input/output relationships, and

communicates that information to the server.

The information exchanged between client and server is determined by variables that are exported by the

client and imported by the server. The server TPL program for a specific service declares a set of variable names;

for example InputFi leName and OptimizeSwitch. The corresponding TPL client program declares similar vari-

able names and binds invocation-specific values to those variables. When the interpreted client TPL program has

completed its processing, it tells the interpreter to execute the requested service remotely. The interpreter then

uses the HRPC service to send exported variables and their values to the server-side interpreter. One parameter

of the HRPC call specifies the requested service so that the server interpreter will know which TPL program to

execute.

TPL provides a number of standard programming language features, for example the ability to loop, com-

pare and branch, build lists, and process strings. The TPL program may also specify local execution of programs

to pre- or post-process files on either the client or server side. Furthermore, TPL contains a number of functions

specific to processing remote computation requests in a heterogeneous system. For example, there are built-in

functions to create local file names of various file types. Typically, a server will receive file names from the

client, and must create system-local names with which to store those files. The server must remember the rela-

tionship between the client name and the server name and must also associate created output files with the input

files from which they were constructed. In this way, the interpreter can produce the reverse mapping from server

output file name back to a client output file name.

To date, THERE has been used to build servers for printer access, text formatters (TeX and troff), and

remote compilers for C and ADA. The client and server agents exist in full form under 4.2/4.3 BSD UNIX, con-

sisting o f about 9000 lines of code written in C++. In contrast, the most complex server (the remote ADA com-

piler) has only about 200 lines of TPL code on each of the client and server.

Under UNIX, THERE runs on all VAX hardware, SUN's and IBM RT/PC's. A partial THERE client

agent has been implemented in Mesa on the Xerox Dandelion workstation. Work is currently underway to com-

plete a THERE port to the Tektronix Pegasus machine running UNIFLEX, a weak derivative of UNIX. Perfor-

mance measurements have shown that the time spent interpreting TPL programs is negligible when compared to

the time spent transferring files and executing the tasks that comprise the remote service.

7. Conclusion

Our initial interest in heterogeneity came from two directions. One was our belief that the ever-growing

intercormection of diverse systems is leading to a situation in which we will be hard-pressed to easily take advan-

tage of the broad set of resources available through this "meganet ." The other was the specific problems we face

every day due to heterogeneity in our local computing environment. Our work is drawing us closer to meeting

our day-to-day needs. This experience is giving us insight to solutions that may apply in the broader case.

Efforts in HCS are continuing. First, we are completing our prototypes in several the areas, including

filing, mail, and remote computation. Second, we are improving the initial prototypes of other areas, especially

HRPC. Third, we are broadening the number of heterogeneous systems on which our facilities and services run.

102

Fourth, we are defining applications that exercise our prototypes, with the dual goals of evaluating our work and

improving the departmental computing facilities.

Acknowledgments. Many thanks go to the other members of the HCS project, including Brian Bershad, Jon Ber-

toni, Andrew P. Black, Fran Brunner, Dennis Ching, Bjom Freeman-Benson, Kimi Gosney, John Maloney, Cliff

Neumann, Brian Pinkerton, Michael Schwartz, Mark Squillante, James Synge, and Douglas Wiebe.

References
[Balkovich et al. 1985]

E. Balkovich, S. Lerman, and R. P. Parmelee. Computing in Higher Education: The Athena Experience.
Comm. of the ACM 28,11 (Nov. 1985).

[Bershad 1985]
B. N. Bershad. Load Balancing With Maitre'D. Technical Report UCB/CSD 86/276, Comp. Sci. Div.
(EECS), Univ. of Calif., Berketey (Dec. 1985).

[Bershad et aL 1987]
Brian N. Bershad, Dennis T. Ching, Edward D. Lazowska, Jan Sanislo, and Michael Schwartz. A Remote
Procedure Call Facility for Interconnecting Heterogeneous Computer Systems. IEEE Trans. on Softw.
Eng. SE-13, 8 (Aug. 1987).

[Bershad & Levy 1987]
Brian N. Bershad and Henry M. Levy. Remote Computation in a Heterogeneous Environment. Techni-
cal Report 87-06-04, Dept. of Comp. Sci., Univ. of Wash. (June 1987).

[Birrell et al. 1982]
A. Birrell, R. Levin, R. Needham, and M. Schroeder. Grapevine: An Exercise in Distributed Comput-
ing. Comm. of the ACM 25,4 (Apr. 1982).

[Birrell et al. 1985]
Andrew D. Birrell, Eric C. Cooper, and Edward D. Lazowska. SRC Remote Procedure Calls. Digital
Equipment Corporation Systems Research Center (Jun. 1985). Unpublished specification.

[Birrell & Nelson 1984]
A. D. Birrell and B. J. Nelson. Implementing Remote Procedure Calls. ACM Trans. on Comp. Sys. 2,1
(Feb. 1984).

[Black et al. I985]
A. Black, E. Lazowska, H. Levy, D. Notkin, J. Sanislo, and J. Zahorjan. An Approach to Accommodat-
ing Heterogeneity. Technical Report 85-10-04, Dept. of Comp. Sci., Univ. of Wash. (Oct. 1985).

[Black et al. 1987]
A. Black, E. Lazowska, H. Levy, D. Notkin, J. Sanislo, and J. Zahorjan. Interconnecting Heterogeneous
Computer Systems. Technical Report 87-01-02, Dept. of Comp. Sci., Univ. of Wash. (Jan. 1987).

[Field]
J. Field. The XDE/UNIX Bridge. ComeU Univ.

[Gettys 1984]
J. Gettys. Project Athena. Proc. USENIX Summer Conf. (Jun. 1984).

[Gray 1986]
T. E. Gray. Position Paper for Workshop on Making Distr. Syst. Work. (Jul. 1986).

[Hagmarm 1985]
R. Hagmann. Summoner Documentation. Xerox PARC (Jul. 1985).

[Johnson I985]
J.Q. Johnson. XNS Courier under UNIX. Cornel[Univ., (Mar. 1985).

[Kaminski 1986]
M. A. Kaminski, Jr. Protocols for Communicating in the Factory. 1EEE Spectrum (Apr. 1986).

103

[Morris et aI. 1986]
J. H. Morris, M. Satyanarayanan, M. H. Conner, J. H. Howard, D. S. H. Rosenthal, and F. D. Smith. An-
drew: A Distributed Personal Computing Environment. Comm. of the ACM 29,3 (Mar. 1986).

[Oppen & Dalai 1983]
Derek C. Oppen and Yogen K. Dalal. The Clearinghouse: A Decentralized Agent for Locating Named
Objects in a Distributed Environment. ACM Trans. on Off. In~. Systems 1, 3 (Jul. 1983).

[Popek et al. I981]
G. Popek, B. Walker, J. Chow, D. Edwards, C. Kline, G. Rudisin, and G. Thiel. LOCUS: A Network
Transparent, High Reliability Distributed System. Proc. of the 8th Symp. on Oper. Sys. Princ. (Dec.
1981).

[Schwartz 1987]
M. Schwartz. Naming Services in Large, Distributed Computer Systems. Ph.D. Thesis, Dept. of Comp.
Sci., Univ. of Washington (Aug. 1987).

[Schwartz et al. 1987]
M. Schwartz, J. Zahorjan, and D. NotiOn. A Name Service for Evolving Heterogeneous Systems. To
appear Proc. of the 11th Symp. on Oper. Sys. (Nov. 1987).

[Sun 1985a]
Sun Microsystems. Remote Procedure Call Protocol Specification. Sun Microsystems, Inc., (Jan. 1985).

[Sun 1985b]
Sun Microsystems. External Data Representation Reference Manual. Sun Microsystems, Inc., (Jan.
1985).

[Terry et al. 1984]
D. Terry, M. Painter, D. Riggte, and S. Zhou. The Berkeley Intemet Name Domain Server. Technical

Report UCB/CSD 84/182, Comp. Sci. Div. (EECS), Univ. of Calif., Berkeley (May 1984).

[Walker et al. 1983]
B. Walker, G. Popek, R. English, C. Kline, and G. Thiel. The LOCUS Distributed Operating System.
Proc. 9th ACM Symp. on Oper. Sys. Princ. (Oct. 1983).

[Xerox 1981]
Xerox Corporation. Courier: The Remote Procedure Call Protocol. Technical Report XSIS 038112,
Xerox Corporation (Dec. 1981).

[Zhou 1984]
S. Zhou. The Design and Implementation of the Berkeley Intemet Name Domain (BIND) Servers.
Report UCB/CSD 84/177, Univ. of Calif., Berkeley (May 1984).

