Abstract
In this paper we investigate how priority search trees can be adapted to secondary memory. We given an optimal solution for the static case, where the set of points to be stored is fixed. For the dynamic case we present data structures derived from B-trees and from a generalized version of red-black trees. The latter are interesting in the internal case, too, since they are better balanced than standard red-black trees, in that the ratio longest path/shortest path is smaller.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
R. Bayer, Symmetric Binary B-trees: Data Structure and Maintenance Algorithms, Acta Informatica, 1 (1972), pp. 290–306.
R. Bayer, E. McCreight, Organization of Large Ordered Indexes, Acta Informatica, 1 (1972), pp. 173–189.
H. Edelsbrunner, Geometrics and Algorithmics — A Tutorial in Computational Geometry, Bulletin of the EATCS, 32 (1987), pp. 118–142.
L. J. Guibas, R. Sedgewick, A Dichromatic Framework for Balanced trees, 19th Annual IEEE Symposium. on Foundations of Computer Science, 1978, pp. 8–21.
K. Hinrichs, The Grid File System: Implementation and Case Studies of Applications, Dissertation at the Swiss Federal Institute of Technology Zürich, ETH Zürich, 1985.
R. Klein, O. Nurmi, Th. Ottmann, D. Wood, Optimal Dynamic Solutions for Fixed Windowing Problems, Proceedings of the 2nd Annual Symposium on Computational Geometry, 1986, pp. 109–115, (to appear in Algorithmica).
E. M. McCreight, Priority Search Trees, SIAM J. Comput., 14 (1985), pp. 257–276.
K. Mehlhorn, Data Structures and Algorithms 1: Sorting and Searching, EATCS Monographs on Theoretical Computer Science, Springer-Verlag, 1984.
K. Mehlhorn, Data Structures and Algorithms 3: Multi-dimensional Searching and Computational Geometry, EATCS Monographs on Theoretical Computer Science, Springer-Verlag, 1984.
J. Nievergelt, H. Hinterberger, K. C. Sevcik, The Grid File: An Adaptable Symmetric Multikey File Structure, ACM Transactions on Data Base Systems, 9(1) (1984), pp. 38–71.
H. J. Olivié, A New Class of Balanced Trees: Half Balanced Binary Search Trees, RAIRO Informatique Théorique, 16 (1982), pp. 51–71.
Th. Ottmann, H.-W. Six, Eine neue Klasse von ausgeglichenen Binärbäumen, Angewandte Informatik, 9 (1976), pp. 395–400.
R. E. Tarjan, Updating a Balanced Search Tree in O(1) Rotations, Information Processing Letters, 16 (1983), pp. 253–257.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1988 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Icking, C., Klein, R., Ottmann, T. (1988). Priority search trees in secondary memory (extended abstract). In: Göttler, H., Schneider, HJ. (eds) Graph-Theoretic Concepts in Computer Science. WG 1987. Lecture Notes in Computer Science, vol 314. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-19422-3_7
Download citation
DOI: https://doi.org/10.1007/3-540-19422-3_7
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-19422-4
Online ISBN: 978-3-540-39264-4
eBook Packages: Springer Book Archive