Skip to main content

Priority search trees in secondary memory (extended abstract)

  • Graphs, Geometry And Data Structures
  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 1987)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 314))

Included in the following conference series:

Abstract

In this paper we investigate how priority search trees can be adapted to secondary memory. We given an optimal solution for the static case, where the set of points to be stored is fixed. For the dynamic case we present data structures derived from B-trees and from a generalized version of red-black trees. The latter are interesting in the internal case, too, since they are better balanced than standard red-black trees, in that the ratio longest path/shortest path is smaller.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. R. Bayer, Symmetric Binary B-trees: Data Structure and Maintenance Algorithms, Acta Informatica, 1 (1972), pp. 290–306.

    Article  Google Scholar 

  2. R. Bayer, E. McCreight, Organization of Large Ordered Indexes, Acta Informatica, 1 (1972), pp. 173–189.

    Article  Google Scholar 

  3. H. Edelsbrunner, Geometrics and Algorithmics — A Tutorial in Computational Geometry, Bulletin of the EATCS, 32 (1987), pp. 118–142.

    Google Scholar 

  4. L. J. Guibas, R. Sedgewick, A Dichromatic Framework for Balanced trees, 19th Annual IEEE Symposium. on Foundations of Computer Science, 1978, pp. 8–21.

    Google Scholar 

  5. K. Hinrichs, The Grid File System: Implementation and Case Studies of Applications, Dissertation at the Swiss Federal Institute of Technology Zürich, ETH Zürich, 1985.

    Google Scholar 

  6. R. Klein, O. Nurmi, Th. Ottmann, D. Wood, Optimal Dynamic Solutions for Fixed Windowing Problems, Proceedings of the 2nd Annual Symposium on Computational Geometry, 1986, pp. 109–115, (to appear in Algorithmica).

    Google Scholar 

  7. E. M. McCreight, Priority Search Trees, SIAM J. Comput., 14 (1985), pp. 257–276.

    Article  MathSciNet  Google Scholar 

  8. K. Mehlhorn, Data Structures and Algorithms 1: Sorting and Searching, EATCS Monographs on Theoretical Computer Science, Springer-Verlag, 1984.

    Google Scholar 

  9. K. Mehlhorn, Data Structures and Algorithms 3: Multi-dimensional Searching and Computational Geometry, EATCS Monographs on Theoretical Computer Science, Springer-Verlag, 1984.

    Google Scholar 

  10. J. Nievergelt, H. Hinterberger, K. C. Sevcik, The Grid File: An Adaptable Symmetric Multikey File Structure, ACM Transactions on Data Base Systems, 9(1) (1984), pp. 38–71.

    Article  Google Scholar 

  11. H. J. Olivié, A New Class of Balanced Trees: Half Balanced Binary Search Trees, RAIRO Informatique Théorique, 16 (1982), pp. 51–71.

    Google Scholar 

  12. Th. Ottmann, H.-W. Six, Eine neue Klasse von ausgeglichenen Binärbäumen, Angewandte Informatik, 9 (1976), pp. 395–400.

    Google Scholar 

  13. R. E. Tarjan, Updating a Balanced Search Tree in O(1) Rotations, Information Processing Letters, 16 (1983), pp. 253–257.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Herbert Göttler Hana-Jürgen Schneider

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Icking, C., Klein, R., Ottmann, T. (1988). Priority search trees in secondary memory (extended abstract). In: Göttler, H., Schneider, HJ. (eds) Graph-Theoretic Concepts in Computer Science. WG 1987. Lecture Notes in Computer Science, vol 314. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-19422-3_7

Download citation

  • DOI: https://doi.org/10.1007/3-540-19422-3_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-19422-4

  • Online ISBN: 978-3-540-39264-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics