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ABSTRACT

Arrangements of curves in the plane are fundamental to many

problems in computational and combinatorial geometry (e.g. motion

planning, algebraic cell decomposition, etc.). In this paper we study

various topological and combinatorial properties of such arrangements

under some mild assumptions on the shape of the curves, and develop

basic tools for the construction, manipulation, and analysis of these

arrangements. Our main results include a generalization of the zone

theorem of [EOS], [CGL] to arrangements of curves (in which we show

that the combinatorial complexity of the zone of a curve is nearly linear

in the number of curves), and an application of that theorem to obtain

a nearly quadratic incremental algorithm for the construction of such

arrangements.

1. Introduction

A Jordan arc 7 is the image of a continuous one-to-one mapping from the inter-

val [0,1] to the plane (together with a point at infinity). K the removal of 7 decom-

poses the plane into two connected components then 7 is called a Jordan curve. K, in

addition, 7 is bounded then it is necessarily the boundary of a bounded and simply

connected set in the plane; in this case 7 is said to be closed.
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Let r'={7i,72,...,7„} be a collection of n closed or unbounded Jordan curves in

the plane, such that each pair of these curves intersect transversally in at most s

points, for some fixed integer s. The arrangement A =A{r) of F is the planar map
induced by these curves; this is a subdivision of the plane whose vertices are the inter-

section points of the curves 7,-, whose edges are the connected components of these

curves minus the vertices, and whose faces are maximal connected regions of the com-

plement of the union of these curves. We will assume in what follows that the

arrangement A is simple, meaning that no point is common to three or more curves

(and, as already assumed, no two curves in F have a point in common where they do

not cross). Since any two curves in F intersect in at most s points, it follows that the

number of vertices in A is at most sn(n—1)/2, and an easy application of Euler's for-

mula allows us to conclude that the number of edges and faces in A is also 0(n ).

We will also consider the case where the curves 7,- are bounded Jordan arcs. In

this case (as in the case of unbounded Jordan curves where we do not count intersec-

tions at the point at infinity), the maximum number s of intersections between any

pair of these curves can be odd. The arrangement A of such arcs is defined in the

same way as above, except that the endpoints of the 7,'s are also taken to be vertices

of A , and that simplicity of A now also requires that no endpoint of one arc 7, lies on

another arc 7y.

Arrangements of curves arise naturally in many problems in computational

geometry. For example, Chazelle and Lee [CL] consider the following problem. Given

n points Xi,X2,---,x„ in the plane with associated weights Wi,W2,--.,iv„, and a fixed

radius r, find a placement of a circle of radius r that maximizes the sum of the

weights of the points i, lying within the circle. It is shown in [CL] that this problem

can be reduced to the problem of calculating the arrangement of n circles of radius r

centered at each of the given points, and then searching through the faces of this

arrangement to find an optimal placement. We can generalize this problem in several

ways. For example, let Ci,C2,---,C„ be n closed convex and disjoint sets in the plane,

and let B be another convex set. Allow B to translate in the plane, and for each

placement of B we want to count how many objects C, it intersects, or sum up cer-

tain weights associated with them, etc. Using standard techniques (as in [KLPS]), we

can form the Minkowsky (vector) difi'erences /C,- = C,—Bqi where Bq is some standard

placement of B in which some fixed reference point O oi B lies at the origin. Let 7,-

be the boundary of AT,, for t=l,2,...,n. It is easily checked that, for each face / of the

arrangement i4 =A({7i,72,...,7„}), all placements of B with the reference point

lying in / intersect the same subset of the objects C,-. Thus calculation of A will pro-

vide a solution to the problems stated above. Note that in this case 7, 7^7^ intersect

in at most 5 =2 points if we assume general position (see [KLPS] for a more precise

statement of this condition and for a proof of this property).
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Many other problems can be reduced to the analysis of an arrangement of curves.

This is the case, for example, when the objects under consideration can be

parametrized as points in the plane, and certain properties of such an object vary

discontinuously as it crosses certain "critical curves". The arrangement of these

curves partitions the plane into "non-critical regions", and construction of these

regions is often required to obtain a discrete combinatorial representation of all possi-

ble problem states. Such examples, involving motion planning problems, can be

found in [SSl], [KO], [MO], [GSS].

A special case of arrangements "which has been studied extensively in the past is

that of lines. An important property of such arrangements is the so-called "Zone

Theorem" (see [CGL], [EOS], [Ed]) which states the following.

Theorem. Let A be an arrangement of n lines /i,/2, ...,/„, and let / be another line.

Then the total number of edges bounding the faces of A that intersect / is 0(n).

We refer to the collection of all these edges as the zone of / in A

.

One useful application of this theorem is that it facilitates the construction of the

arrangement A^^i of n+l lines /i,/2>"-''n)^n+i from the arrangement A„ of the first n

lines in linear time as follows. Assume without loss of generality that / = /„+i is the

i-axis. First find the leftmost unbounded face of A„ crossed by /. Next process the

faces of A„ crossed by / from left to right. At each such face / find the rightmost

point of / n/; this will determine the next face /' of A„ crossed by /, and the process

is then repeated for /'. The crossing points of / with the boundaries of the faces in

A„ are found by traversing all edges in the zone of /; the number of such edges is

0(n) by the Zone Theorem. For each of these faces /, the algorithm also splits /

into two new faces in A„^i, and updates (also in linear time) the planar map

representation of the arrangement. The resulting sequence of incremental updates

yields an overall optimal 0(n ) algorithm for the calculation of arrangements of n

lines.

The zone theorem has found other applications, some of which are described in

[Ed].

Our goal is to extend the study of planar arrangements to allow more general

curves. In particular, we want to extend the zone theorem to such arrangements and

explore its algorithmic consequences. Of course, in this more general setting, we

encounter several new technical difficulties which make analysis and calculation of

these arrangements somewhat more complicated. First of all, the bound given in the

zone theorem for lines may be incorrect for certain collections of (rather simple)

curves, such as line segments or circles, and a modified estimate of the overall com-

plexity of the arrangement faces crossed by a new curve is required. To expand upon

this issue, let Fq be an (infinite) collection of Jordan curves or arcs with the property

that any two non-overlapping curves in Fq (that is, curves whose intersection does not

contain any arc) intersect in at most s points. For each finite subcollection TC-To °f
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non-overlapping curves that give rise to a simple arrangement A{r), and for each

curve TfE/^o""-^ which does not overlap any 76/^ and such that A{r\J {'')}) is also sim-

ple, let tJ-{r,^) denote the total number of edges in the faces of A(r) crossed by -7

(again we refer to the collection of all these edges as the zone of 7 in A [F)). Let

^n(^o) = max{M(r,7)},

where the maximum is taken over all n-element subcollections FCTq and curves

7 G /^o satisfying the above conditions.

Our main result is

Theorem 1. a„(ro)=0(X,+2("))-

Here X,(n) is the maximimi length of a so-called {n,s) Davenport-Schinzel

sequence (or (n,5)-sequence) defined as follows. An {n,s)-sequence is a linear

sequence composed of n different elements so that no two consecutive elements are

the same and there is no (not necessarily contiguous) subsequence of length 5+2 of the

form fiufiu..., for pL^u. We refer to [HS], [Shi], [Sh2], [ASS] for more details concern-

ing these sequences. The following is known about the length of Davenport-Schinzel

sequences.

Xi(n) = n and X2(n)=2n—1 (trivial).

X3(n) =0(na(n)), where a{n) is the functional inverse of Ackermann's function,

and thus grows extremely slowly [HS].

X4(n)=e(n-2''(")) [ASS].

X2,(n) = n-2®('*(")*"') for 5>2 [ASS].

>^25+l{n) = n-"(")°^''^"^*"^ for 5>2 [ASS].

Thus X^(n) is almost linear in n for any fixed s (and superlinear for s ^3).

For some example applications of our main result, let L denote the collection of

all lines in the plane, S denote the collection of all line segments, and C denote the

collection of all circles. For L, an appropriate modification of our proof technique

yields an improved bound

cT„(L) = 0(X2(n)) = 0(n),

which matches the bound in [EOS], [CGLj. For S our result specializes to

ajS) = 0(X3(n)) = 0(na(n)),

and for C we obtain

a„(C)=0(X,(n))=0(n-2'^(")).

Moreover, recent results by Wiernik and Sharir [WS] and by Shor [Sho] imply a lower

bound of f2(nQ(n)) on both <7n(S) and cr„(C).
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Wlien we try to calculate an arrangement of more general curves, several addi-

tional difj :ulties arise. One difficulty is that the collection of edges in such arrange-

ments need not be connected. Another is that individual faces in such arrangements

can have a fairly complex structure. The incremental technique of [EOS], [CGL] for

arrangements of lines is based on the property that each face / in such an arrange-

ment is convex; thus any line intersects / in at most two points, and these points can

be easily computed in time proportional to the number of edges of /. In arrange-

ments of more general curves, a face / may have a disconnected boundary, and every

single connected component of its boundary may intersect the additional curve 7 in

many points. Even though all these points can be calculated in time proportional to

the number of edges of / (assuming that "primitive" operations, such as calculating

the intersection points of a given pair of curves, require constant time), appropriate

sorting of these points along 7, in constant time per point, is no longer a simple task

to accomplish.

All these problems can be dealt with, even when using a naive representation,

where the faces of the current arrangement are maintained by the collections of their

boundary components, each stored as a circular list, so that intersections of a new

curve 7 with these boundaries are found by simply traversing these lists. However,

this approach requires several elaborate and complicated techniques (including Jordan

sorting [HMRT] of the intersections along 7) which make implementation of this tech-

nique impractical.

Instead, we propose to maintain each face of the current arrangement using a

vertical cell decomposition (which splits each face / into trapezoidal-like subcells) and

then update this cell decomposition as a new curve is being added. This leads to a

rather simple algorithm, whose efficient performance depends on our zone theorem.

For this simpler method to apply, some further (though quite natural) restrictions

have to be imposed on the shape of the curves in Fq. The resulting algorithm runs in

time 0(nX,^2("))» ^.nd is thus close to optimal in the worst case. Incidentally, our

algorithm is quite similar to an independently discovered algorithm by Mulmuley [M]

which constructs the arrangement of line segments. A main difference between our

similar approaches is, however, that he gives a randomized time bound while our

work is geared towards the worst case that can happen.

Our analysis in section 2 is based on several topological and combinatorial tools

which are presented here. One tool of interest is Theorem 2 which provides a nearly

linear upper bound on the complexity of a single face in an arrangement of curves.

We believe that the topological and combinatorial analysis given in section 2 will

have many applications beyond the incremental construction of arrangements. For

example, recent results in [CEGSW], [AS] use our generalized zone theorem in an

analysis of the complexity of many cells in arrangements of curves, and in an analysis

of the combinatorial complexity of a single component in an arrangement of triangles

in three-dimensional space.
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In the interest of brevity, throughout the paper we will use a somewhat informal

language for describing operations on arrangements of curves.

2. Combinatorial Bounds for Zones

Let Fq be a collection of Jordan curves or arcs with the properties stated in the

introduction. Let r ={^1,^27—1^11} ^^ ^ finite subcollection of Fq, and let ')^FQ—Fhe

such that F and 7 also satisfy the conditions stated in the introduction. That is, each

pair of the curves in F\j{i} intersect one another only transversally, in at most s

points, and the arrangement A{F[j{i}) is simple.

Our goal is to obtain a sharp upper bound on the complexity of /i(/','7), that is,

the total number of edges of the faces of A =A{F) that intersect 7. Since all our

counting results will be asymptotical it does not make a difference whether or not we

double-count an edge bounding two such faces.

We assume here that 7 is a Jordan curve and thus separates the plane into two

disjoint connected components, which we denote as K^ and K~. If 7 is a bounded

Jordan arc, we can "expand" 7 into a closed Jordan curve by taking two disjoint

curves lying very close to 7 and connecting their endpoints; then we can apply our

analysis to this curve. (Note that the resulting curve can now intersect any other

curve in up to 25 point; this will, however, not change our analysis.)

Let F^ be the collection of curves that intersect 7. Each 7, GT^ intersect 7 in at

most s points, so it is split by 7 into at most s+1 connected pieces, each of which lies

either in K'^ or in K~.

Let f"*" {F~) denote the collection of all curves in F (including the appropriate

pieces of the curves in F^) that are fully contained in K"^ {K~). Put 71"*" = [r"*"!, and

n~ = |r~| (so n"'"+n~ is proportional to n). In estimating ^(/',7), it is clearly sufficient

to bound only the number /x"*" of edges in the portions of the faces of A that are

crossed by 7 and lie in IC^, and then use twice this bound as a bound for n[F,'i).

Before starting our analysis, we first comment on the special case in which F^ is

empty and all curves in F are Jordan curves. For each ''^^EF'^ let iC(7,) denote the

connected component of R —7, that is disjoint from 7, and let K = U K^(7,)-

Clearly 7 is fully contained in a single connected component of the complement K' of

K. By the recent results of [SS2], the boundary of this component consists of at most

0(X,(n+)) edges. Hence /i(r+,7) = 0(X,(n+)).

When this favorable case does not arise, we need to analyze the more general

case in which some curves in F'^ may be Jordan arcs. In this case, Theorem 2 below

implies the slightly weaker bound m(-^"*^>7) =0(X,+2("'''))' This theorem has originally

been proven in [GSS] (and in [PSS] for the special case of line segments); for the sake

of completeness we give below full details of the proof.
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Theorem 2. Let A ={81,62,. ..,5^^ be a collection of m Jordan arcs, any two of which

intersect in at most 5 points. Then the number of edges bounding a single face of

A[A) is at most 0(X,+2("*))*

Proof. Let / be the given face, and let C be a connected component of its boun-

dary. It suffices to show that, if k arcs of A appear along C, then the number of

edges of A[A) in C is 0(X,+2(^))' Since X^^jC^) is ^(^) '^^ '^^Y as^'^^e without loss

of generality that all m arcs of A appear along C. For each <5, let u,, u, be its end-

points. Let
6'i'

[6~) be the directed arc (5,- oriented from u,- to t;,- (from v^ to u,).

Traverse C so that / lies to your left, and let 5 =(5^,52, ...,5^ be the circular

sequence of oriented curves in A in the order in which they appear along C (if C is

unbounded, then 5 is a linear rather than circular sequence). More precisely, if dur-

ing our traversal of C we encounter a curve (5, and follow it in the direction from u,-

to u, (resp. from «, to u,) then we add 8"^ (resp. <5~) to 5. As an example, if the end-

point u,- of 8i is on C, then traversing C past u, will add the pair of elements 8~
, (5,

to 5, and symmetrically for t;,- (see Figure 1).

In what follows we will use the following notation. We denote the oriented arcs

oi A zs ^i,^2»"M^2m- For each ^, we denote by ^, the non-oriented arc 8j coinciding

with ^,. For the purpose of the proof we will replace each arc 6, by a closed Jordan

curve 6,- that surrounds but does not intersect <5,- and whose points lie sufficiently close

to <5,-. This will perturb the face / slightly, but, assuming the arrangement A{A) is

simple, will not change the combinatorial structure of the boundary of /, and in par-

ticular of C . We can cut 6^ into two pieces at points close to the endpoints of (5,- so

that one of the two pieces can be naturally identified with 8'^ and the other piece with

We next need the following lemmas.

Lemma 3. The portions of each arc ^, appear in 5 in a circular order which is con-

sistent with their order along the oriented ^, (that is, there exists a starting point in S

- which depends on ^,- - such that if we read S in circular order starting from that

point, we encounter these portions in their order along ^,).

Proof. Let ^, x] be two portions of ^, that appear consecutively along C. Choose two

points I GC S'lid y ^rj and connect them by the portion a of C traversed from i to y,

and by another arc /? inside ^,*. Clearly a and /3 do not intersect (except at their

endpoints) and they are both contained in the complement of /. Thus their union

qU/? is a closed Jordan curve and / is either fully outside of fully inside a.[J0 (see

Figure 2). We claim that any point on ^, between f and r) is contained in the side of

aU/? that does not contain /. Indeed, connect such a point 2 to i along an arc p

that proceeds very near ^, outside ^,* (see Figure 2). Clearly p and /? are disjoint,

and, deforming a. slightly as necessary, we can assume that p intersects a transver-

sally and exactly once, which implies our claim. This claim completes the proof of the
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lemma.

For each directed arc ^, consider the linear sequence V,- of all appearances of ^,

in 5, arranged in the order they appear along ^,. Let /,• and /,• denote the index in 5

of the first and last element of F,-. Consider S ={si,S2,.--,Si) as a linear, rather than

circular, sequence by cutting it at an arbitrary point (this step is not needed if C is

unbounded). For each arc ^,, if fi>li we split (^,- into two distinct arcs ^,^, ^,2) ^'^^

replace all appearances of ^, in 5 between the places /, and t (resp. between 1 and /,)

by ^,1 (resp. ^,2). If we perform this operation for every ^,, we produce a sequence 5*,

of the same length as 5, composed of at most Am different symbols.

The assertion of the theorem is then an inomediate consequence of the following.

Lemma 4. S is a (4m,5+2)-sequence.

Proof. Since it is clear that no two adjacent elements of S can be equal, it remains

to show that 5 does not contain an alternating subsequence of the form

H...i/...^...u... of length 5+4. Suppose to the contrary that 5* does contain such an

alternation, and consider any four consecutive elements of this alternation. Choose

non-vertex points i,t/E/i and non-vertex points z,w^u so that C passes through

these points in the order x,z,y,w. Consider the following Jordan arcs (see Figure 3).

/3jj, is an arc inside ^x connecting i to y;

0g^ is an arc inside IT* connecting 2 to t:;;

Cjj, is the portion of C traversed in direction from a: to y with face / on the left.

Note that Cjj, does not intersect /?j„ and (3^ except at their endpoints. We
claim that I3j.y and /3^ must intersect one another.

The union of C^y and /3j„ forms a closed Jordan curve / which cuts the plane

into two components. Call the one that contains the face / the outside. Since w does

not lie on / and lies on the boundary of / , it must lie outside /. Since z lies in the

relative interior of an arc that is common to / and the boundary of / there must be

some z' on /3^ sufficiently close to z that does not lie outside /. Thus the portion of

/?^ that forms a path between z' and w must intersect J. As it does not intersect

Cjy, it must intersect /3jj,, as claimed.

This shows that each quadruple of consecutive elements in our alternation

induces at least one intersection point between the corresponding arcs (i^y Cm and

/?^ Cu. Moreover, it is easily checked that for any pair of distinct quadruples of this

type, either the two corresponding subarcs of the form /3jy along ^i are disjoint, or the

two subarcs /?^ along u are disjoint. Thus all these intersections must be distinct.

Since the number of such quadruples is s-H—3 = s+l, we obtain a contradiction,

which completes the proof of the lemma.

Lemmas 3 and 4 complete the proof of Theorem 2, and, as argued above, also the

proof of Theorem 1. As corollaries to Theorem 1, we obtain
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(a) a„(S) = 0(na(n)) for S the collection of all line segments.

(b) a„(C)=0(n-2'*("^) and f7„(C) = n(na(n)) for C the collection of all circles.

(c) A similar upper bound holds for arrangements of the boundaries dK^ of n vector

differences K^ =Ai—B, i==l,2,...,n, for disjoint closed convex sets A, and a closed con-

vex set B , as discussed in the introduction.

The proof of all these claims is straightforward. All upper bounds are immediate

consequences of Theorem 1 and of the observations made in the introduction. The

lower bound in (a) for line segments follows from the fact, proved in [WS] and [Sho],

that even a single face in an arrangement of n segments can contain ?l[na[n)) edges.

The lower bound in (b) for circles follows from a recent result of [Sho] giving a con-

struction of n circular arcs whose endpoints lie on the i-axis and which otherwise lie

above the i-axis, such that their lower envelope consists of n(na(n)) subarcs. If we

complete each of these arcs to a full circle, and approximate the i-axis by a

suflBciently large circle, we obtain the claimed lower bound. See also the remarks at

the end of Section 3 below for other related results.

Another interesting consequence of Theorem 1 can be stated as follows. Take

^={'7ij'72>--)'7n}C^o 2.nd consider the zones defined by 7, in A(r—{'7,}) for all

1 < J < n . We take the sum of the numbers of edges of all n zones which we know is

0(nX,^.2(n)), with s defined as usual. Let / be a face in A{r), let kj be the number

of curves contributing edges to /, and let |/ | be the number of edges bounding /.

Observe that the edges of / are counted for every one of the kj curves. More pre-

cisely, when we consider the zone of 7,- which contributes j edges to / , then we add

at least \f \—c-j to the total sum, where c is some positive constant between 1 and 2.

Here we get a constant c not necessarily equal to 1 because two edges of / that are

separated by an edge on 7,- can belong to a single edge in the face of A(r—{7,}) that

contains /. Thus, the total contribution of / to the above sum is at least kj \f |—2|/ |,

Since the sum of the 2|/ |
taken over all faces / of the arrangement is 0(n ) we get

E Al/l = 0(nX,^2(n)).

As shown in Theorem 2, |/ | =0(X^+2(^/))- This together with <

implies

E |/P=0( E |/|X,,2(fc;))=0(^^i^ E I/|A:;) = 0(X,%^^^^^
f\nA(r) /inA(r) n /iii^(r)

Suppose we are now Interested in the maximum number of edges bounding some m
faces of A[P}. Using standard inequalities (see e.g. a similar analysis in [Ed]), we get

m
E|/.| = 0(m^/=X,,2(n)).
1-1

We formulate this result as a theorem. It is weaker than bounds obtained for special
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case3 such as lines, line segments, and circles (see [EGS] and [CEGSW]) but applies to

more general curves.

Theorem 5. Let T be a set of n curves from Fq (satisfying the conditions mentioned

before Theorem 1). The maximum number of edges bounding m faces of A (r) is

3. Incremental Construction of General Arrangements

Let Fq be a family of Jordan curves or arcs as defined in the introduction. We
assume that the curves in Fq have relatively simple shape. In particular, we assume

that each ^GFq consists of at most p smooth portions and has at most q points of

vertical tangency, for some small fixed integer constants p and q. Moreover, we

assume that each of the following operations can be performed in time proportional to

the size of the requested output.

(i) Find the intersection points of two curves in Fq.

(ii) Given a vertical line segment, find its highest and lowest intersections with a

curve ^^Fq.

(iii) Using some standard parametrization of curves in Fq, determine, for any ^G-Tq

and any two points iij/G^, the relative order of x and y along 7 in this

parametrization.

(iv) Given a curve 'y G Fq, find its points of vertical tangency.

Let F = {7i,'72»"M7n} ^^ ^.n n-element subcollection of Fq. We assume that any

two curves in F intersect only transversally, in at most s points, and the arrangement

A{F) is simple. For each m ^n let /",„ ={7i,'72,--M7m}- ^^^ S^^^ is to calculate

A{F)=A{F„) incrementally, by starting with A{Fi) (which has a trivial structure)

and by adding the curves 7,- one at a time, obtaining progressively the arrangements

A{F2), A{F2), •
, A(r„). Each output arrangement A is assumed to be represented

by the following data structure.

Each face of A is split into subcells by drawing a vertical segment from each ver-

tex t; of A (including endpoints and points of vertical tangency along the given arcs),

and extending it until it meets the arcs lying directly above and directly below v.

Each resulting subcell is like a trapezoid - it is bounded by two vertical segments

(each of which may degenerate to a single point, a half-line, or a full line), and, at its

top and bottom, by a portion of an arc. We maintain this collection of subcells as a

refinement of A so that each cell contains pointers to its edges and each vertex

(whether an original vertex of A or a new endpoint of one of the vertical segments)

points to its incident edges. It will be important that each cell is bounded by only a

constant number of edges. This can be maintained only if we abandon the idea of

having the subdivision stored as a cell complex (where every edge is incident to
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exactly two faces). An edge is thus directed (e.g. in the sense that it is associated with

the cell that lies to its left) and can overlap with an arbitrary number of edges that lie

on the same arc but are directed the other way. With each (directed) edge we store

the cell it bounds and also the leftmost edge that overlaps it and is directed the other

way.

Since each vertex of A induces at most two vertical segments, it is clear that the

complexity of the refinement of A is proportional to the complexity of A itself. We
refer to the refinement of A as its vertical cell decomposition.

The incremental calculation of the sequence of arrangements proceeds as follows.

Suppose the arrangement A^ =A(r^) has already been constructed for some m <in

(and is represented by its vertical cell decomposition). Given the next curve l= lm+i,

we wish to calculate ^^^.j =i4(r^^.i)=A(r^ UJ^}) (again represented by its vertical

cell decomposition). The first step is to locate the trapezoidal cell of A„ containing

some initial point Zq of 7. For this, assume that 7 is an x-monotone arc; this can

always be enforced by breaking 7 into 0(1) pieces at its points of vertical tangency.

Let Zq^'I be its leftmost endpoint, if it exists. Otherwise choose ZqE.! to the left of

all its intersections with the arcs of F^. By drawing the vertical line passing through

Zq and determining its two nearest intersections with the arcs in T^, it is easy to

determine the cell Cg containing Zq in 0(m) time.

Next we trace 7 from Zg t° ^tie right, and keep track of all the trapezoidal cells of

Aff^ intersected by 7. This is done as follows. Since each trapezoidal cell has constant

complexity, we can find in constant time the first intersection 9 of 7 with the boun-

dary of Cg. If g lies on the upper or lower boundary of Cg, then it is a new vertex of

Af„^i. In this case we split Cg into two subcells by drawing the vertical segment from

q through Cg, split the new cell Cj into which 7 enters by a similar segment, and con-

tinue the tracing of 7 in Cj. The only difficult step in this computation is to find c^.

Remember that the vertical cell decomposition of A^ is not a cell complex which, for

example, means that the upper and lower edges of Cg can have an arbitrary number

of bordering cells on the other side. Suppose 7 intersects the upper edge of Cg. In

this case we have a pointer to the leftmost cell on the other side of the edge and we

simply check whether this cell is c^; if it is not we mark the cell and check the cell to

its right (which is one of at most two cells and can thus be found in constant time).

As we check and mark cells we let the upper edge of Cg maintain a pointer to the left-

most yet unmarked cell on the other side in order to avoid going through the same

list of cells again in case 7 intersects the upper edge of Cg more than twice.

Suppose next that q lies on the right vertical boundary /? of Cg, and let Cj be the

adjacent cell. Assuming general position, we can suppose that /? passes through just

one vertex v of A,„ (which can also be an endpoint or a point of vertical tangency

along some arc). For specificity, we assume that v lies above q. Then the portion of

P below q is superfluous in A^+j, since it corresponds to no vertex of that
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arrangement. It needs to be deleted and therefore the lower portion of Cq below 7

must be merged with the lower portion of c^. We thus split Cq into two subcella along

7, assign the truncated (3 = vq as the right boundary of the upper subcell, but leave

the lower subcell "open-ended" to the right, and record the fact that it needs to be

merged with subsequent subcells. We continue the tracing of 7 in this manner, keep-

ing track of which side of 7 (if any) contains an open-ended cell. When 7 reaches a

top or bottom cell boundary, both the open-ended cell and the cell on the other side

of 7 terminate (and are processed in the manner described above). When 7 reaches

another right cell boundary, either the open-ended cell terminates (so that it can now

be assigned an appropriate right boundary), and the cell on the other side becomes

open-ended, or the open-ended cell continues to be open-ended, to be merged with

further subcells. Continuing to trace 7 in this manner until reaching its right end-

point or its final unbounded edge in A^^i, we obtain the desired new arrangement

^m+i> properly represented by its vertical cell decomposition. See Figure 4 for an

illustration of this procedure.

Let us now assess the total amount of time needed for updating arrangement A„
to obtain A^^i in this manner. The work mainly consists of walking from one tra-

pezoidal cell to the next and updating the adjacency structure of trapezoidal cells as

new cells are being formed and old cells are merged. By our marking strategy we

guarantee that the time is proportional to the number of trapezoidal cells into which

the (original) cells of A^ that meet 7 are decomposed. These cells are exactly those

whose edges form the zone of 7 and, by Theorem 1, the maximum number of edges of

a zone is 0(Xj+2(n)). The number of trapezoids in the decomposition is proportional

to the number of edges in the zone.

By what we said above it takes time 0(X3^.2(Tn)) to construct the vertical cell decom-

position of Ajn+i if the vertical cell decomposition of A^ is given. We thus obtain the

main result of this section.

Theorem 6. The incremental procedure for calculating the arrangement A{r) runs

in 0(nX,^2(")) time and takes O(n^) storage.

As corollaries to Theorem 6, we obtain the following results.

(a) One can calculate an arrangement of n line segments in time 0{n a{n)). Of

course, one can construct the arrangement faster, namely in time 0{n\ogn+k) where

A: is the number of intersecting pairs of line segments, using a different algorithm (see

[CE]).

(b) One can calculate an arrangement of n circles in time 0(n •2'*^"^).

(c) Similarly, one can calculate in time 0{n^-2°'^"') the arrangement of the boundaries

dKi of n vector differences K,=A^—B, t=l,2,...,n, for disjoint closed convex sets A,-

and a closed convex set B (all having simple shapes). Hence, within the same time

bound, one can find an optimal placement of B which maximizes either the number
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of objects A,- intersected by B, or more generally the sum of certain weights associ-

ated with these objects.

Remarks, (l) The superlinear lower bounds on the complexity of a zone in an

arrangement of segments or of circles, as mentioned at the end of section 2, do not

necessarily imply a superquadratic lower bound on the complexity of an incremental

algorithm for the calculation of the arrangement. For example, taking the lower

bound construction of [WS|, [Sho], which gives a collection of n line segments whose

lower envelope consists of n(na(n)) subsegments, and then adding n additional long

horizontal segments, each lying below this envelope and above the preceding segment,

it is easily checked that the total number of edges traversed during our incremental

algorithm is Cl{n a{n)). However, this bound arises only when the horizontal seg-

ments are inserted in increasing order of their height. Many other orders, such as a

random order (see Mulmuley [M]), or the reverse of the above order, will perform

much better in this case.

(2) McKenna and O'Rourke [MO] have independently obtained a special case of

Theorems 1, 2 and 6 for arrangements of hyperbo -is. Because of the special proper-

ties of their arrangements they were able to avoid many of the topological difficulties

that we had to face.

(3) In certain special cases one can obtain slight improvements both in the combina-

torial complexity of a zone and in the complexity of the above incremental algorithm.

For example, in the case of unit-circles, the analysis given in [CL] shows that the por-

tion of the zone of a unit-circle 7 in an arrangement of n other unit-circles which lies

outside -7 is only 0(n). Using this fact, [CL] obtain an incremental algorithm in which

only the "outer zone" of each newly added circle is being traversed, resulting in an

overall O(n^) complexity. In contrast, when considering the entire zone, our tech-

niques can be adapted to prove an upper bound of 0(na(n)) on the complexity of a

zone. Specifically, we split each unit-circle at its rightmost and leftmost points to

obtain an upper semicircle and a lower semicircle. Any two upper semicircles inter-

sect in at most one point, and similarly, any two lower semicircles intersect at most

once. Thus, Theorems 1 and 2 imply that the complexity of the zone of a new unit-

circle 7 in the arrangement A^ (^~) of all upper (lower) semicircles is

0(X3(n))=0(na(n)). Finally, we invoke the combination lenoma of [GSSj to deduce

that the zone of 7 in the arrangement of A"^ and A~ superimposed on one another

(which is to say in the arrangement of the original full unit-circles) is also 0(na(n)).

Combining this observation with the results of [CL] we see that if indeed the zone of a

new unit-circle 7 is superlinear in size, this can only be if its portion within 7 is super-

linear. We do not know whether this can really happen.

(4) A very similar situation arises in the case of the zone of an arbitrary closed convex

curve 7 in an arrangement of n lines. The complexity of the "outer zone" of 7 is

bounded by the maximum complexity of a single cell in an arrangement of 2n half-

lines, which by a recent result of [ABP] is only 0(n). On the other hand, the
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complexity of the "inner zone" of 'y is bounded by the maximum complexity of the

unbounded cell in an arrangement of n line segments in the plane which by Theorem

2 is 0(na(n)). We conjecture that the inner zone of such a curve 7 can indeed have

n{na{n)) complexity.

An interesting problem for further study is whether the new technique of topological

sweeping, as given in [EG] for arrangements of line, can be adapted to apply to

arrangements of more general arcs and curves.

4. The Special Case of Lines

In this section we conclude with a relatively easy "exercise" which gives a new

proof of the zone theorem for lines, using (a simplified version of) the general tech-

nique developed in this paper.

Let jL ={/i,/2,...,/„} be a collection of n lines in the plane, and let / be another

line, which without loss of generality is assumed to be the i-axis. Consider the edges

of the zone of / in A(L) that lie above /. As in section 2, we truncate each line /, to

its portion p, lying in that half-plane, which is simply a half-line emerging from some

point on the i-axis. We also expand each p,- to a narrow angular wedge p* from that

point, and distinguish between the left side p~ and the right side p^ of p*. We need

to bound the number of edges in the bottom unbounded face / of the arrangement

A{{p^,...,p^,Pi,...,p~]). As in section 3, we pick some connected component C of

df . It is easily checked that in this case C must be unbounded, and we traverse it so

that / lies to our right (informally this is equivalent to a left-to-right traversal of the

faces of A{L) crossed by /). We now write down the sequence S of half-lines in the

order they appear along C, but we split this sequence into two subsequences S~ and

S"*" so that S~ (S"*") contains only the appearances of the left half-lines p~ (the right

half-lines p^).

We claim that S~ and 5"*" are both (n,2)-sequences, and we will prove this for

S~. First note that S~ does not contain a pair of equal adjacent elements. Indeed,

suppose to the contrary that S~ contains an adjacent pair Pi^pf- Then S had to con-

tain some other right half-line pj' between these two left elements, and then C must

also traverse some left half-line (other than p~) between these two portions of p~, a

contradiction.

Next we show that S~ does not contain any alternating quadruple of the form

p~...p~...p~...p~. Indeed, suppose to the contrary that S~ does contain such a qua-

druple. Let x,y £p~nC, z,w ^pJDC be four points appearing along C in the order

x,z,y,w. Using the same arguments as in the proof of Lemma 4, one can show that

the segments xy and zw must intersect (at the unique point q of intersection of p~

and p~). But then it is easily checked that the angular wedge xqw must be disjoint

from / , and that w cannot appear along C (see Figure 5).
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Thus the length of S~ and 5"*"
is at most 27x^—1 each, where tiq is the number of

half-lines appearing in C. Hence the total number of edges in C is at most 4nQ—2.

Summing over all components C, it follows that the total size of the "upper zone" of

/ is at most 4n—2, which matches the bounds obtained in [EOS] and [CGL|.
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