Abstract
An algorithm is given for finding a collision free path for a disc between a collection of polygons having n corners in total. The polygons are fixed and can be preprocessed. One query specifies the radius r of the disc to be moved and start and destination point of the center of the disc. The answer whether a feasible path exists is given in time O(log n). Returning a feasible path is done in additional time proportional to the length of the description of the path. Preprocessing time is O(n log n) and space complexity is O(n).
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
7. References
H. EDELSBRUNNER: “An Optimal Solution for Searching in General Planar Subdivisions”, Technical Report 1983, Institutes for Information Processing, Technical University of Graz, Austria
S. FORTUNE: “A Sweepline Algorithm for Voronoi Diagrams”, Proc. of the Second Symp. on Computational Geometry 1986, pp. 313–322
D. HAREL, R. E. TARJAN: “Fast Algorithms for Finding Nearest Common Ancestors”, SIAM Journal on Computing, Vol. 13, No. 2, 1984, pp. 338–355
D. G. KIRKPATRICK: “Efficient Computation of Continuous Skeletons”, IEEE FOCS 1979, pp. 18–27
D. T. LEE, F. P. PREPARATA: “Location of a point in a planar subdivision and its applications”, SIAM Journal on Computing, Vol. 6, 1977, pp. 594–606
K. MEHLHORN: “Data Structures and Algorithms”, Vol. 1, pp. 296–304, published 1984 by Springer-Verlag, Berlin Heidelberg New York Tokyo
C. Ó'DÚNLAING, C. K. YAP: “A ‘Retraction’ Method for Planning the Motion of a Disc”, Journal of Algorithms, Vol. 6, pp. 104–111 (1985)
T. OTTMANN, P. WIDMEYER, D. WOOD: “A Fast Algorithm for Boolean Mask Operations”, Inst. für Angew. Mathematik und Formale Beschreibungsverfahren, D-7500 Karlsruhe, Rept. No. 112 (1982)
M. I. SHAMOS: “Geometric Complexity”, Proc. of the Seventh Annual ACM Symposium on Theory of Computing, pp. 224–233 (1975)
R. E. TARJAN: “Efficiency of a Good But Not Linear Set Union Algorithm”, Journal of the ACM, Vol. 22, No. 2, pp. 215–225 (1975)
C. K. YAP: “An O(n log n) Algorithm for the Voronoi Diagram of a Set of Simple Curve Segments”, Technical Report No. 161, New York University, Dept. of Computer Science, May 1985
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1988 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Rohnert, H. (1988). Moving discs between polygons. In: Lepistö, T., Salomaa, A. (eds) Automata, Languages and Programming. ICALP 1988. Lecture Notes in Computer Science, vol 317. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-19488-6_137
Download citation
DOI: https://doi.org/10.1007/3-540-19488-6_137
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-19488-0
Online ISBN: 978-3-540-39291-0
eBook Packages: Springer Book Archive