Skip to main content

Integrated Structure-control Design of Dynamically Walking Robots

  • Conference paper
Climbing and Walking Robots

Abstract

This study is motivated by the need of dynamics-based methodologies for overall design of legged robots (LR). Along with the basic design requirement for strength/load capacity, additional design criteria for LR are needed to meet the continuously increasing demands for faster motion, higher position accuracy and reduced energy consumption. A conceptual framework for their integrated structure-control design is proposed that can be used to create LR with maximum capability to achieve the required dynamic performance. To verify our design optimisation concepts, several interesting examples regarding two- and four-LR are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kiriazov, P.: Robust decentralized control of mechanical systems, Solid Mechanics and its Applications, Vol.52, Ed. D. van Campen, Kluwer Acad. Publ., 1997, 175–182

    Google Scholar 

  2. Kiriazov, P., Virk, G.S. On design optimization of legged robots, Proc. of the 2nd CLAWAR Conf. on Climbing and Walking Robots, Sept. 1999, Portsmouth, England, Eds. Virk, G.S., M Randall, and D Howard, Professional Engineering Publ. Ltd, 373–381.

    Google Scholar 

  3. Kiriazov, P., Efficient approach for dynamic parameter identification and control design of structronic systems, Solid Mechanics and its Applications, Vol. 89, Eds. U. Gabbert and H.S. Tzou, Kluwer Acad. Publ, 2001, pp. 323–330.

    Google Scholar 

  4. Kiriazov, P. Learning robots to move: biological control concepts, Proc. 4th CLAWAR Conf. on Climbing and Walking Robots, Karlsruhe, Germany, Eds. K. Berns and R. Dillman, Prof. Eng. Publ. Ltd, 2001, pp. 419–426.

    Google Scholar 

  5. Lunze, J.: Feedback Control of Large-Scale Systems, Prentice Hall, UK, 1992

    MATH  Google Scholar 

  6. Nwokah, O. D. I. and Yau, C.-H.: Quantitative feedback design of decentralized control systems, ASME Journal of Dynamic Systems, Measurement and Control, 115, pp. 452–466, 1993

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kiriazov, P. (2006). Integrated Structure-control Design of Dynamically Walking Robots. In: Tokhi, M.O., Virk, G.S., Hossain, M.A. (eds) Climbing and Walking Robots. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26415-9_35

Download citation

  • DOI: https://doi.org/10.1007/3-540-26415-9_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26413-2

  • Online ISBN: 978-3-540-26415-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics