Skip to main content

Momentum Compensation for the Dynamic Walk of Humanoids Based on the Optimal Pelvic Rotation

  • Conference paper

Abstract

In this paper, a method of determining the optimal rotation of the humanoid’s waist for momentum compensation around the perpendicular axis of the stance foot during dynamic walk is proposed. In order to perform a task using the arms during a walk, it is desirable that the upper body part, i.e., the arms and the trunk, should not be used for the momentum compensation and should be dedicated to achieving a task. The proposed walk achieves a whole walking motion including momentum compensation only by the lower body. The characteristics of the trunk-twistless walk are analyzed by using the mathematical model. The optimal relative phase of the swing leg and the pelvic rotation appears to be in an angle around. And we also confirm that the torque around the perpendicular axis is reduced in the proposed trunk-twistless walk of humanoid when compared to a standard humanoid walk without the twisting of the trunk or swinging of the arms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Takanishi, M. Ishida, Y. Yamazaki, and I. Kato (1985) The realization of dynamic walking by biped walking robot WL-10RD. Proc. Int. Conf. Advanced Robotics, pp. 459–466.

    Google Scholar 

  2. A. Goswami (1999) Postural Stability of Biped Robots and the Foot Rotation Indicator (FRI) Point. Int. J. Robotics Research, vol.18, no.6, pp. 523–533.

    Article  MathSciNet  Google Scholar 

  3. S. Kajita, et al. (2002) A Realtime Pattern Generator for Biped Walking. Proc. Int. Conf Robotics and Automation.

    Google Scholar 

  4. K. Harada, S. Kajita, K. Kaneko, and H. Hirukawa (2003) ZMP Analysis for Arm/Leg Coordination. Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems.

    Google Scholar 

  5. R._E. A. van Emmerik, and R. C. Wagenaar (1996) Effects of walking velocity on relative phase dynamics in the trunk in human walking. J. Biomech, vol. 29, no. 9, pp. 1175–1184.

    Article  Google Scholar 

  6. C.J.C. Lamoth, P.J. Beek, and O.G. Meijer (2002) Pelvis-thorax coordination in the transverse plane during gait. Gait & Posture, vol. 16, pp. 101–114.

    Article  Google Scholar 

  7. M. LaFiandra, R.C. Wagenaar, K.G. Holt, J.P. Obusek (2003) How do load carriage and walking speed influence trunk coordination and stride parameters? Journal of Biomechanics, vol. 36, no. 1, pp. 87–95.

    Article  Google Scholar 

  8. J. Yamaguchi, A. Takanishi, I. Kato (1993) Development of a biped walking robot compensating for three-axis moment by trunk motion. Proc. Int. Workshop Intelligent Robotics and Systems, pp. 561–566.

    Google Scholar 

  9. S. Kagami, F. Kanehiro, Y. Tamiya, M. Inaba, H. Inoue (2000) AutoBalancer: An Online Dynamic Balance Compensation Scheme for Humanoid Robots. Proc. 4th Int. Workshopon Algorithmic Foundation on Robotics, pp. 329–340.

    Google Scholar 

  10. K. Yamane and Y. Nakamura (2003) Dynamics Filter-Concept and Implementation of online Motion Generator for Human Figures. IEEE Trans. Robotics and Automation, vol.19, no.3, pp.421–432.

    Article  Google Scholar 

  11. S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, and H. Hirukawa (2003) Resolved Momentum Control: Humanoid Motion Planning based on the Linear and Angular Momentum. Proc. IEEE/RSJ Int. Conf. Intelli. Robots and Systems pp. 1644–1650.

    Google Scholar 

  12. J. Ueda, K. Shirae, Y. Matsumoto, S. Oda, T. Ogasawara (2004) Momentum Compensation for the Fast Dynamic Walk of Humanoids based on the Pelvic Rotation of Contact Sport Athletes. Proc. of IEEE/RSJ Int. Conf. on Humanoid Robots.

    Google Scholar 

  13. H. Inoue, et al. (2000) HRP, Humanoid Robotics Project of MITI. Proc. IEEE-RAS Int. Conf. Humanoid Robots.

    Google Scholar 

  14. H. Hirukawa, F. Kanehiro and S. Kajita (2001) OpenHRP, Open Architecture Humanoid Robotics Platform. Proc. Int. Symp. Robotics Research.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Takemura, H., Matsuyama, A., Ueda, J., Matsumoto, Y., Mizoguchi, H., Ogasawarahi, T. (2006). Momentum Compensation for the Dynamic Walk of Humanoids Based on the Optimal Pelvic Rotation. In: Tokhi, M.O., Virk, G.S., Hossain, M.A. (eds) Climbing and Walking Robots. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26415-9_58

Download citation

  • DOI: https://doi.org/10.1007/3-540-26415-9_58

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26413-2

  • Online ISBN: 978-3-540-26415-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics