Skip to main content

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Summary

Angle Based Flattening is a robust parameterization technique allowing a free boundary. The numerical optimisation associated with the approach yields a challenging problem. We discuss several approaches to effectively reduce the computational effort involved and propose appropriate numerical solvers. We propose a simple but effective transformation of the problem which reduces the computational cost and simplifies the implementation. We also show that fast convergence can be achieved by finding approximate solutions which yield a low angular distortion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.P. Bertsekas. Constrained optimization and lagrange multiplier methods. Athena Scientific, 1996.

    Google Scholar 

  2. R.H. Byrd and J. Nocedal. Active set and interior methods for nonlinear optimization Doc. MATH, Extra Volume ICM III, 1998, pp. 667–676.

    MathSciNet  Google Scholar 

  3. M. Desbrun, M. Meyer, and P. Alliez. Intrinsic parameterizations of triangle meshes. Proc. Eurographics 2002, pp. 209–218.

    Google Scholar 

  4. G. Di Battista and L. Vismara. Angles of planar triangular graphs. SIAM Journal on Discrete Mathematics, 9(3), 1996, pp. 349–359.

    Article  MathSciNet  Google Scholar 

  5. M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, and W. Stuetzle. Multiresolution analysis of arbitrary meshes. Proc. ACM SIGGRAPH '95, pp. 173–182.

    Google Scholar 

  6. M. S. Floater. Parametrization and smooth approximation of surface triangulations. Comp. Aided Geom. Design, (14), 3, 1997, pp. 231–250.

    Article  MATH  MathSciNet  Google Scholar 

  7. M. S. Floater and K. Hormann. Parameterization of triangulations and unorganized points. Tutorials on Multiresolution in Geometric Modelling Springer-Verlag, Heidelberg (2002), pp. 287–315.

    Google Scholar 

  8. M. S. Floater. Mean value coordinates. Comp. Aided Geom. Design, (20), 1, 2003, pp. 19–27.

    Article  MATH  MathSciNet  Google Scholar 

  9. M. S. Floater and K. Hormann. Surface parameterization: a tutorial and survey, Advances in Multiresolution for Geometric Modelling, N. A. Dodgson, M. S. Floater, and M. A. Sabin (eds.), Springer, 2004, pp. 157–186 (this book).

    Google Scholar 

  10. M. R. Hestenes and E. Stiefel. Method of conjugate gradients for solving linear systems. J. Res. Nat. Bur. Stand. 49:409–436, 1952.

    MathSciNet  Google Scholar 

  11. A. Garg. New results on drawing angle graphs. Computational Geometry (9), (1–2), 1998, pp. 43–82.

    Article  MATH  MathSciNet  Google Scholar 

  12. A. Greenbaum. Iterative Methods for Solving Linear Systems SIAM, Philadelphia, 1997.

    Google Scholar 

  13. S. Haker, S. Angenent, A. Tannenbaum, R. Kikinis, G. Sapiro, and M. Halle. Conformal surface parameterization for texture mapping. IEEE Transactions on Visualization and Computer Graphics, 6(2), 2000, pp. 181–189.

    Article  Google Scholar 

  14. K. Hormann and G. Greiner. MIPS: an efficient global parametrization method. Curve and Surface Design: Saint-Malo 1999, 2000, pp. 153–162.

    Google Scholar 

  15. B. Levy, S. Petitjean, N. Ray, and J. Maillot. Least squares conformal maps for automatic texture atlas generation. Proc. ACM SIGGRAPH 2002, pp. 362–371.

    Google Scholar 

  16. J. Liesen, E. de Sturler, A. Sheffer, Y. Aydin, and C. Siefert. Preconditioners for indefinite linear systems arising in surface parameterization. Proceedings of the 10th International Meshing Round Table, 2001, pp. 71–81.

    Google Scholar 

  17. C. Paige and M. Saunders. Solution of sparse indefinite systems of linear equations. SIAM J. Numer. Anal, 12, 1975, pp. 617–629.

    Article  MathSciNet  Google Scholar 

  18. U. Pinkall and K. Polthier. Computing discrete minimal surfaces and their conjugates. Experimental Mathematics, 2(15), 1993, pp. 15–36.

    MathSciNet  Google Scholar 

  19. P. Sander, J. Snyder, S. Gortler, and H. Hoppe. Texture mapping progressive meshes. Proc. ACM SIGGRAPH 2001, pp. 409–416.

    Google Scholar 

  20. A. Sheffer and E. de Sturler. Parameterization of faceted surfaces for meshing using angle based flattening. Engineering with Computers, 17(3), 2001, pp. 326–337.

    Article  Google Scholar 

  21. A. Sheffer and E. de Sturler. Smoothing an overlay grid to minimize linear distortion in texture mapping. ACM Transactions on Graphics, 21(4), 2002.

    Google Scholar 

  22. O. Sorkine, D. Cohen-Or, R. Goldenthal, and D. Lischinski. Bounded-distortion piecewise mesh parameterization. Proc. IEEE Visualization 2002, pp. 355–362.

    Google Scholar 

  23. W. T. Tutte. How to draw a graph. Proceedings of the London Mathematical Society, 13(3), 1963, pp. 743–768.

    MATH  MathSciNet  Google Scholar 

  24. G. Zigelmann, R. Kimmel, and N. Kiryati. Texture mapping using surface flattening via multi-dimensional scaling. IEEE Transactions on Visualization and Computer Graphics, 8(2), 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zayer, R., Rössl, C., Seidel, HP. (2005). Variations on Angle Based Flattening. In: Dodgson, N.A., Floater, M.S., Sabin, M.A. (eds) Advances in Multiresolution for Geometric Modelling. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26808-1_10

Download citation

Publish with us

Policies and ethics