Skip to main content

Subdivision as a Sequence of Sampled Cp Surfaces

  • Conference paper
Advances in Multiresolution for Geometric Modelling

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Summary

This article deals with practical conditions for tuning a subdivision scheme in order to control its artifacts in the vicinity of a mark point. To do so, we look for good behaviour of the limit vertices rather than good mathematical properties of the limit surface. The good behaviour of the limit vertices is characterised with the definition of C2-convergence of a scheme. We propose necessary explicit conditions for C2-convergence of a scheme in the vicinity of any mark point being a vertex of valency greater or equal to three.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. A. Ball and D. J. T. Storry. Conditions for tangent plane continuity over recursively generated B-spline surfaces. ACM Transactions on Graphics, 7(2):83–102, 1988.

    Article  Google Scholar 

  2. L. Barthe, C. Gérot, M. A. Sabin, and L. Kobbelt. Simple computation of the eigencomponents of a subdivision matrix in the fourier domain. In N. A. Dodgson, M. S. Floater, and M. A. Sabin, editors, Advances in Multiresolution for Geometric Modelling, pages 245–257 (this book). Springer-Verlag, 2004.

    Google Scholar 

  3. L. Barthe and L. Kobbelt. Subdivision scheme tuning around extraordinary vertices. Submitted.

    Google Scholar 

  4. E. Catmull and J. Clark. Recursively generated B-spline surfaces on arbitrary topological meshes. Computer Aided Design, 10(6):350–355, 1978.

    Article  Google Scholar 

  5. D. Doo and M. A. Sabin. Behaviour of recursive division surface near extraordinary points. Computer Aided Design, 10(6):356–360, 1978.

    Article  Google Scholar 

  6. C. Gérot, L. Barthe, N. A. Dodgson, and M. A. Sabin. Subdivision as sequence of sampled Cp-surfaces and conditions for tuning schemes. Technical Report 583, University of Cambridge Computer Laboratory, Mar 2004. http://www.cl.cam.ac.uk/TechReports/UCAM-CL-TR-583.pdf.

    Google Scholar 

  7. C. T. Loop. Smooth subdivision surfaces based on triangles. Master's thesis, University of Utah, 1987.

    Google Scholar 

  8. J. Peters and U. Reif. Analysis of algorithms generalizing B-spline subdivision. SIAM J. Numer. Anal., 35(2):728–748, 1998.

    Article  MathSciNet  Google Scholar 

  9. H. Prautzsch. Smoothness of subdivision surfaces at extraordinary points. Adv. Comput. Math, 9:377–389, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  10. H. Prautzsch and G. Umlauf. Improved triangular subdivision schemes. In Proc. Computer Graphics International, pages 626–632, 1998.

    Google Scholar 

  11. U. Reif. A unified approach to subdivision algorithm near extraordinary vertices. Computer Geometric Aided Design, 12:153–174, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  12. M. A. Sabin. Eigenanalysis and artifacts of subdivision curves and surfaces. In A. Iske, E. Quak, and M. S. Floater, editors, Tutorials on Multiresolution in Geometric Modelling, pages 69–97. Springer-Verlag, 2002.

    Google Scholar 

  13. M. A. Sabin. Recent progress in subdivision — a survey. In N. A. Dodgson, M. S. Floater, and M. A. Sabin, editors, Advances in Multiresolution for Geometric Modelling, pages 203–230 (this book). Springer-Verlag, 2004.

    Google Scholar 

  14. M. A. Sabin and L. Barthe. Artifacts in recursive subdivision surfaces. In A. Cohen, J.-L. Merrien, and L. L. Schumaker, editors, Curve and Surface Fitting: Saint-Malo 2002, pages 353–362. Nashboro Press, 2003.

    Google Scholar 

  15. J. Stam. Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values. Proc. ACM SIGGRAPH '98, pages 395–404, 1998.

    Google Scholar 

  16. D. Zorin. Stationary subdivision and multiresolution surface representations. PhD thesis, California Institute of Technology, 1997

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gérot, C., Barthe, L., Dodgson, N.A., Sabin, M. (2005). Subdivision as a Sequence of Sampled Cp Surfaces. In: Dodgson, N.A., Floater, M.S., Sabin, M.A. (eds) Advances in Multiresolution for Geometric Modelling. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26808-1_14

Download citation

Publish with us

Policies and ethics