Summary
Most established subdivision schemes have the refined grid at each stage aligned with the previous one. The \(\sqrt 3 \) and \(\sqrt 2 \) schemes alternate orientations. This paper is one of the first detailed studies of a skew scheme in which the axis directions after refinement do not either lie along or bisect those before. It raises the issue of how the analysis techniques can be applied in this new context and provides an example of how they may be thus applied.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
M. Alexa. Split operators for triangular refinement. Computer Aided Geometric Design, 19(3):169–172, 2002.
F. Bachmann and E. Schmidt. n-Ecke. B.I.-Hochschultaschenbücher, 1970.
A. A. Ball and D. J. T. Storry. Conditions for tangent plane continuity over recursively generated B-spline surfaces. ACM Transactions on Graphics, 7(2):83–102, 1988.
L. Barthe, C. Gérot, M. A. Sabin, and L. Kobbelt. Simple computation of the eigencomponents of a subdivision matrix in the Fourier domain. In N. A. Dodgson, M. S. Floater, and M. A. Sabin, editors, Advances in Multiresolution for Geometric Modelling, pages 245–257 (this book). Springer, 2004.
E. R. Berlekamp, E. N. Gilbert, and F. W. Sinden. A polygon problem. Am. Math. Mon., 72:233–241, 1965.
E. Catmull and J. Clark. Recursively generated B-spline surfaces on arbitrary topological meshes. Computer-Aided Design, 10:350–355, 1978.
P. J. Davis. Circulant matrices. Chichester: Wiley, New York, 1979.
D. Doo and M. Sabin. Behaviour of recursive division surfaces near extraordinary points. Computer-Aided Design, 10:356–360, 1978.
N. Dyn. Subdivision schemes in computer-aided geometric design. In W. Light, editor, Advances in Numerical Analysis, volume 2, pages 36–104. Clarendon Press, 1992.
N. Dyn, D. Levin, and J. Simoens. Face value subdivision schemes on triangulations by repeated averaging. In A. Cohen, J.-L. Merrien, and L. L. Schumaker, editors, Curve and Surface Fitting: Saint-Malo 2002, pages 129–138. Nashboro Press, 2003.
M. S. Floater. Mean value coordinates. Computer Aided Geometric Design, 20(1):19–28, 2003.
I. P. Ivrissimtzis, N. A. Dodgson, and M. A. Sabin. A generative classification of mesh refinement rules with lattice transformations. Computer Aided Geometric Design, 21(1):99–109, 2004.
I. P. Ivrissimtzis, M. A. Sabin, and N. A. Dodgson. On the support of recursive subdivision. ACM Transactions on Graphics. To appear.
I. P. Ivrissimtzis and H.-P. Seidel. Evolutions of polygons in the study of subdivision surfaces. Computing. To appear.
I. P. Ivrissimtzis, K. Shrivastava, and H.-P. Seidel. Subdivision rules for general meshes. In A. Cohen, J.-L. Merrien, and L. L. Schumaker, editors, Curve and Surface Fitting: Saint-Malo 2002, pages 229–238. Nashboro Press, 2003.
I. P. Ivrissimtzis, R. Zayer, and H.-P. Seidel. Polygonal decomposition of the 1-ring neighborhood of the Catmull-Clark scheme. In Proc. Shape Modeling International, 2004. To appear.
L. Kobbelt. \(\sqrt 3 \) subdivision. In Proc. ACM SIGGRAPH 2000, pages 103–112, 2000.
C. T. Loop. Smooth subdivision surfaces based on triangles. Master's thesis, University of Utah, Department of Mathematics, 1987.
P. Oswald and P. Schröder. Composite primal/dual sqrt(3)-subdivision schemes. Computer Aided Geometric Design, 20(3):135–164, 2003.
U. Reif. A unified approach to subdivision algorithms near extraordinary vertices. Computer Aided Geometric Design, 12(2):153–174, 1995.
M. A. Sabin. Eigenanalysis and artifacts of subdivision curves and surfaces. In A. Iske, E. Quak, and M. S. Floater, editors, Tutorials on Multiresolution in Geometric Modelling, pages 69–92. Springer, 2002.
I. H. Sloan and S. Joe. Lattice methods for multiple integration. Oxford Science Publications. Oxford: Clarendon Press., 1994.
M. Stamminger and G. Drettakis. Interactive sampling and rendering for complex and procedural geometry. In Proc. Eurographics Workshop on Rendering, pages 151–162, 2001.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ivrissimtzis, I.P., Dodgson, N.A., Sabin, M. (2005). \(\sqrt 5 \)-subdivision. In: Dodgson, N.A., Floater, M.S., Sabin, M.A. (eds) Advances in Multiresolution for Geometric Modelling. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26808-1_16
Download citation
DOI: https://doi.org/10.1007/3-540-26808-1_16
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-21462-5
Online ISBN: 978-3-540-26808-6
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)