Skip to main content

Topology Preserving Thinning of Vector Fields on Triangular Meshes

  • Conference paper
Advances in Multiresolution for Geometric Modelling

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

  • 2250 Accesses

Summary

We consider the topology of piecewise linear vector fields whose domain is a piecewise linear 2-manifold, i.e. a triangular mesh. Such vector fields can describe simulated 2-dimensional flows, or they may reflect geometric properties of the underlying mesh. We introduce a thinning technique which preserves the complete topology of the vector field, i.e. the critical points and separatrices. As the theoretical foundation, we have shown in an earlier paper that for local modifications of a vector field, it is possible to decide entirely by a local analysis whether or not the global topology is preserved. This result is applied in a number of compression algorithms which are based on a repeated local modification of the vector field — namely a repeated edge-collapse of the underlying piecewise linear domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. C. Bajaj and D. Schikore. Topology-preserving data simplification with error bounds. Comput. & Graphics, 22(1):3–12, 1998.

    Article  Google Scholar 

  2. C. L. Bajaj, V. Pascucci, and D. R. Schikore. Visualization of scalar topology for structural enhancement. In Proc. IEEE Visualization '98, pages 51–58, 1998.

    Google Scholar 

  3. W. de Leeuw and R. van Liere. Collapsing flow topology using area metrics. In Proc. IEEE Visualization '99, 1999.

    Google Scholar 

  4. W. de Leeuw and R. van Liere. Visualization of global flow structures using multiple levels of topology. In Data Visualization 1999. Proc. VisSym 99, pages 45–52, 1999.

    Google Scholar 

  5. T. K. Dey, H. Edelsbrunner, S. Guha, and D. V. Nekhayev. Topology preserving edge contraction. Publ. Inst. Math (Beograd), 66(1999):23–45, 1999.

    MathSciNet  Google Scholar 

  6. H. Edelsbrunner, J. Harer, and A. Zomorodian. Hierarchical Morse complexes for piecewise linear 2-manifolds. In Proc. 17th Sympos. Comput. Geom. 2001, 2001.

    Google Scholar 

  7. P. A. Firby and C. F. Gardiner. Surface Topology, chapter 7, pages 115–135. Ellis Horwood Ltd., 1982. Vector Fields on Surfaces.

    Google Scholar 

  8. H. Garcke, T. Preusser, M. Rumpf, A. Telea, U. Weikardt, and J. van Wijk. A continuous clustering method for vector fields. In T. Ertl, B. Hamann, and A. Varshney, editors, Proc. IEEE Visualization 2000, pages 351–358, 2000.

    Google Scholar 

  9. A. Globus and C. Levit. A tool for visualizing of three-dimensional vector fields. In Proc. IEEE Visualization '91, pages 33–40. IEEE Computer Society Press, 1991.

    Google Scholar 

  10. B. Heckel, G.H. Weber, B. Hamann, and K.I. Joy. Construction of vector field hierarchies. In D. Ebert, M. Gross, and B. Hamann, editors, Proc. IEEE Visualization '99, pages 19–26, Los Alamitos, 1999.

    Google Scholar 

  11. J. Helman and L. Hesselink. Representation and display of vector field topology in fluid flow data sets. IEEE Computer, 22(8):27–36, August 1989.

    Google Scholar 

  12. D. N. Kenwright, C. Henze, and C. Levit. Feature extraction of separation and attachment lines. IEEE Transactions on Visualization and Computer Graphics, 5(2):135–144, 1999.

    Article  Google Scholar 

  13. S. K. Lodha, J. C. Renteria, and K. M. Roskin. Topology preserving compression of 2D vector fields. In Proc. IEEE Visualization 2000, pages 343–350, 2000.

    Google Scholar 

  14. G. Scheuermann, H. Krüger, M. Menzel, and A. Rockwood. Visualizing nonlinear vector field topology. IEEE Transactions on Visualization and Computer Grapics, 4(2):109–116, 1998.

    Article  Google Scholar 

  15. H. Theisel. Designing 2D vector fields of arbitrary topology. Computer Graphics Forum (Eurographics 2002), 21(3):595–604, 2002.

    Article  Google Scholar 

  16. H. Theisel, C. Rössl, and H.-P. Seidel. Compression of 2D vector fields under guaranteed topology preservation. Computer Graphics Forum (Eurographics 2003), 22(3):333–342, 2003.

    Article  Google Scholar 

  17. X. Tricoche, G. Scheuermann, and H. Hagen. A topology simplification method for 2D vector fields. In Proc. IEEE Visualization 2000, pages 359–366, 2000.

    Google Scholar 

  18. X. Tricoche, G. Scheuermann, and H. Hagen. Continuous topology simplification of planar vector fields. In Proc. Visualization 01, pages 159–166, 2001.

    Google Scholar 

  19. I. Trotts, D. Kenwright, and R. Haimes. Critical points at infinity: a missing link in vector field topology. In Proc. NSF/DoE Lake Tahoe Workshop on Hierarchical Approximation and Geometrical Methods for Scientific Visualization, 2000.

    Google Scholar 

  20. R. Westermann, C. Johnson, and T. Ertl. Topology-preserving smoothing of vector fields. IEEE Transactions on Visualization and Computer Graphics, 7(3):222–229, 2001.

    Article  Google Scholar 

  21. T. Wischgoll and G. Scheuermann. Detection and visualization of closed streamlines in planar flows. IEEE Transactions on Visualization and Computer Graphics, 7(2):165–172, 2001.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Theisel, H., Rössl, C., Seidel, HP. (2005). Topology Preserving Thinning of Vector Fields on Triangular Meshes. In: Dodgson, N.A., Floater, M.S., Sabin, M.A. (eds) Advances in Multiresolution for Geometric Modelling. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26808-1_20

Download citation

Publish with us

Policies and ethics