Summary
We consider the topology of piecewise linear vector fields whose domain is a piecewise linear 2-manifold, i.e. a triangular mesh. Such vector fields can describe simulated 2-dimensional flows, or they may reflect geometric properties of the underlying mesh. We introduce a thinning technique which preserves the complete topology of the vector field, i.e. the critical points and separatrices. As the theoretical foundation, we have shown in an earlier paper that for local modifications of a vector field, it is possible to decide entirely by a local analysis whether or not the global topology is preserved. This result is applied in a number of compression algorithms which are based on a repeated local modification of the vector field — namely a repeated edge-collapse of the underlying piecewise linear domain.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
C. Bajaj and D. Schikore. Topology-preserving data simplification with error bounds. Comput. & Graphics, 22(1):3–12, 1998.
C. L. Bajaj, V. Pascucci, and D. R. Schikore. Visualization of scalar topology for structural enhancement. In Proc. IEEE Visualization '98, pages 51–58, 1998.
W. de Leeuw and R. van Liere. Collapsing flow topology using area metrics. In Proc. IEEE Visualization '99, 1999.
W. de Leeuw and R. van Liere. Visualization of global flow structures using multiple levels of topology. In Data Visualization 1999. Proc. VisSym 99, pages 45–52, 1999.
T. K. Dey, H. Edelsbrunner, S. Guha, and D. V. Nekhayev. Topology preserving edge contraction. Publ. Inst. Math (Beograd), 66(1999):23–45, 1999.
H. Edelsbrunner, J. Harer, and A. Zomorodian. Hierarchical Morse complexes for piecewise linear 2-manifolds. In Proc. 17th Sympos. Comput. Geom. 2001, 2001.
P. A. Firby and C. F. Gardiner. Surface Topology, chapter 7, pages 115–135. Ellis Horwood Ltd., 1982. Vector Fields on Surfaces.
H. Garcke, T. Preusser, M. Rumpf, A. Telea, U. Weikardt, and J. van Wijk. A continuous clustering method for vector fields. In T. Ertl, B. Hamann, and A. Varshney, editors, Proc. IEEE Visualization 2000, pages 351–358, 2000.
A. Globus and C. Levit. A tool for visualizing of three-dimensional vector fields. In Proc. IEEE Visualization '91, pages 33–40. IEEE Computer Society Press, 1991.
B. Heckel, G.H. Weber, B. Hamann, and K.I. Joy. Construction of vector field hierarchies. In D. Ebert, M. Gross, and B. Hamann, editors, Proc. IEEE Visualization '99, pages 19–26, Los Alamitos, 1999.
J. Helman and L. Hesselink. Representation and display of vector field topology in fluid flow data sets. IEEE Computer, 22(8):27–36, August 1989.
D. N. Kenwright, C. Henze, and C. Levit. Feature extraction of separation and attachment lines. IEEE Transactions on Visualization and Computer Graphics, 5(2):135–144, 1999.
S. K. Lodha, J. C. Renteria, and K. M. Roskin. Topology preserving compression of 2D vector fields. In Proc. IEEE Visualization 2000, pages 343–350, 2000.
G. Scheuermann, H. Krüger, M. Menzel, and A. Rockwood. Visualizing nonlinear vector field topology. IEEE Transactions on Visualization and Computer Grapics, 4(2):109–116, 1998.
H. Theisel. Designing 2D vector fields of arbitrary topology. Computer Graphics Forum (Eurographics 2002), 21(3):595–604, 2002.
H. Theisel, C. Rössl, and H.-P. Seidel. Compression of 2D vector fields under guaranteed topology preservation. Computer Graphics Forum (Eurographics 2003), 22(3):333–342, 2003.
X. Tricoche, G. Scheuermann, and H. Hagen. A topology simplification method for 2D vector fields. In Proc. IEEE Visualization 2000, pages 359–366, 2000.
X. Tricoche, G. Scheuermann, and H. Hagen. Continuous topology simplification of planar vector fields. In Proc. Visualization 01, pages 159–166, 2001.
I. Trotts, D. Kenwright, and R. Haimes. Critical points at infinity: a missing link in vector field topology. In Proc. NSF/DoE Lake Tahoe Workshop on Hierarchical Approximation and Geometrical Methods for Scientific Visualization, 2000.
R. Westermann, C. Johnson, and T. Ertl. Topology-preserving smoothing of vector fields. IEEE Transactions on Visualization and Computer Graphics, 7(3):222–229, 2001.
T. Wischgoll and G. Scheuermann. Detection and visualization of closed streamlines in planar flows. IEEE Transactions on Visualization and Computer Graphics, 7(2):165–172, 2001.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Theisel, H., Rössl, C., Seidel, HP. (2005). Topology Preserving Thinning of Vector Fields on Triangular Meshes. In: Dodgson, N.A., Floater, M.S., Sabin, M.A. (eds) Advances in Multiresolution for Geometric Modelling. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26808-1_20
Download citation
DOI: https://doi.org/10.1007/3-540-26808-1_20
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-21462-5
Online ISBN: 978-3-540-26808-6
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)