Skip to main content

An Approach to Parameter Estimation and Model Selection in Differential Equations

  • Conference paper
Modeling, Simulation and Optimization of Complex Processes

Summary

Two distinct and essentially independent sources of error occur in the parameter estimation problem — the error due to noisy observations, and the error due to approximation or discretization effects in the computational procedure. These give contributions of different orders of magnitude so the problem is essentially a two grid problem and there is scope for balancing these to minimize computational effort. Here the underlying computing procedures that determine these errors are reviewed. There is considerable structure in the integration of the differential system, and the role of cyclic reduction in unlocking this is discribed. The role of the stochastic effects in the optimization component of the computation is critically important in understanding the success of the Gauss-Newton algorithm, and the importance both of adequate data and of a true model is stressed. If the true model must be sought among a range of competitors then a stochastic embedding technique is suggested that converts under-specified models into “non-physical” consistent models for which the Gauss-Newton algorithm can be used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ascher, U., Mattheij, R., Russell, R.: Numerical Solution of Boundary Value Problems for Ordinary Differential Equations. SIAM, Philadelphia (1995)

    MATH  Google Scholar 

  2. Osborne, M.: Fisher's method of scoring. Int. Stat. Rev. 86 (1992) 271–286

    MathSciNet  Google Scholar 

  3. Tjoa, I., Biegler, L.: Simultaneous solution and optimization strategies for parameter estimation of differential-algebraic systems. Ind. Eng. Chem. Res. 30 (1991) 376–385

    Article  Google Scholar 

  4. Osborne, M.: Cyclic reduction, dichotomy, and the estimation of differential equations. J. Comp. and Appl. Math. 86 (1997) 271–286

    Article  MATH  MathSciNet  Google Scholar 

  5. Hegland, M., Osborne, M.R.: Wrap-around partitioning for block bidi-agonal linear systems. IMA J. Numer. Anal. 18 (1998) 373–383

    Article  MathSciNet  MATH  Google Scholar 

  6. Li, Z.: Parameter Estimation of Ordinary Differential Equations. PhD thesis, School of Mathematical Sciences, Australian National University (2000)

    Google Scholar 

  7. Osborne, M.: Scoring with constraints. ANZIAM J. 42 (2000) 9–25

    MATH  MathSciNet  Google Scholar 

  8. Lalee, M., Nocedal, J., Plantenga, T.: On the implementation of an algorithm for large-scale equality constrained optimization. SIAM J. Optim. 8 (1998) 682–706

    Article  MathSciNet  MATH  Google Scholar 

  9. Craven, P., Wahba, G.: Smoothing noisy data with spline functions. Numer. Math. 31 (1979) 377–403

    Article  MathSciNet  MATH  Google Scholar 

  10. Wecker, W., Ansley, C.F.: The signal extraction approach to nonlinear regression and spline smoothing. J. Amer. Statist. Assoc. 78 (1983) 81–89

    Article  MathSciNet  MATH  Google Scholar 

  11. Ansley, C.F., Kohn, R.: Estimation, filtering, and smoothing in state space models with incompletely specified initial conditions. The Annals of Statistics 13 (1985) 1286–1316

    MathSciNet  MATH  Google Scholar 

  12. Osborne, M.R., Prvan, T.: On algorithms for generalised smoothing splines. J. Austral. Math. Soc. B 29 (1988) 322–341

    MathSciNet  MATH  Google Scholar 

  13. Osborne, M.R., Prvan, T.: Smoothness and conditioning in generalised smoothing spline calculations. J. Austral. Math. Soc. B 30 (1988) 43–56

    Article  MathSciNet  MATH  Google Scholar 

  14. Paige, C.C., Saunders, M.A.: Least squares estimation of discrete linear dynamic systems using orthogonal transformations. SIAM J. Numer. Anal. 14 (1977) 180–193

    Article  MathSciNet  MATH  Google Scholar 

  15. Wahba, G.: A comparison of GCV and GML for choosing the smoothing parameter in the generalised spline smoothing problem. Ann. Statist. 13 (1985) 1378–1402

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Osborne, M.R. (2005). An Approach to Parameter Estimation and Model Selection in Differential Equations. In: Bock, H.G., Phu, H.X., Kostina, E., Rannacher, R. (eds) Modeling, Simulation and Optimization of Complex Processes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27170-8_30

Download citation

Publish with us

Policies and ethics