Abstract
Clustering of variables around latent components is a means of organizing multivariate data into meaningful subgroups. We extend the approach to situations with missing data. A straightforward method is to replace the missing values by some estimates and cluster the completed data set. This basic imputation method is improved by more sophisticated procedures which update the imputations within each group after an initial clustering of the variables. We compare the performance of the different imputation methods with the help of a simulation study.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
CALLIER, P. (1996): La cartographie des préférences. Son application en milieu industriel et son extension aux plans incomplets. Université Montpellier II (Doctorat en biostatistique).
GREENHOFF, K. and Mac FIE, H.J.H. (1994): Preference mapping in practice. In: H.J.H. Mac Fie and D.M.H. Thomson (Eds.): Measurement of food preferences, Blackie academic & professional, 137–166.
LEBART, L., MORINEAU, A. and PIRON, M. (2000): Statistique exploratoire multidimensionnelle, 3ième édition. Dunod, Paris.
SAHMER, K. (2003): Classification des variables en présence de données manquantes: Application aux données de préférence. Diplomarbeit, Fachbereich Statistik, Universität Dortmund.
SAS/STAT (1999): User's guide, Version 8, SAS Institute Inc., Cary, North Carolina.
VIGNEAU, E. and QANNARI, E.M. (2002): Segmentation of consumers taking account of external data. A clustering of variables approach. Food Quality and Preference, 13, 515–521.
VIGNEAU, E. and QANNARI, E.M. (2003): Clustering of variables around latent components. Communications in Statistics — Simulation and Computation, 32, 1131–1150.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin · Heidelberg
About this paper
Cite this paper
Sahmer, K., Vigneau, E., El Qannari, M., Kunert, J. (2005). Clustering of Variables with Missing Data: Application to Preference Studies. In: Weihs, C., Gaul, W. (eds) Classification — the Ubiquitous Challenge. Studies in Classification, Data Analysis, and Knowledge Organization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28084-7_22
Download citation
DOI: https://doi.org/10.1007/3-540-28084-7_22
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-25677-9
Online ISBN: 978-3-540-28084-2
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)