Skip to main content

Clustering of Variables with Missing Data: Application to Preference Studies

  • Conference paper
Classification — the Ubiquitous Challenge

Abstract

Clustering of variables around latent components is a means of organizing multivariate data into meaningful subgroups. We extend the approach to situations with missing data. A straightforward method is to replace the missing values by some estimates and cluster the completed data set. This basic imputation method is improved by more sophisticated procedures which update the imputations within each group after an initial clustering of the variables. We compare the performance of the different imputation methods with the help of a simulation study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • CALLIER, P. (1996): La cartographie des préférences. Son application en milieu industriel et son extension aux plans incomplets. Université Montpellier II (Doctorat en biostatistique).

    Google Scholar 

  • GREENHOFF, K. and Mac FIE, H.J.H. (1994): Preference mapping in practice. In: H.J.H. Mac Fie and D.M.H. Thomson (Eds.): Measurement of food preferences, Blackie academic & professional, 137–166.

    Google Scholar 

  • LEBART, L., MORINEAU, A. and PIRON, M. (2000): Statistique exploratoire multidimensionnelle, 3ième édition. Dunod, Paris.

    Google Scholar 

  • SAHMER, K. (2003): Classification des variables en présence de données manquantes: Application aux données de préférence. Diplomarbeit, Fachbereich Statistik, Universität Dortmund.

    Google Scholar 

  • SAS/STAT (1999): User's guide, Version 8, SAS Institute Inc., Cary, North Carolina.

    Google Scholar 

  • VIGNEAU, E. and QANNARI, E.M. (2002): Segmentation of consumers taking account of external data. A clustering of variables approach. Food Quality and Preference, 13, 515–521.

    Article  Google Scholar 

  • VIGNEAU, E. and QANNARI, E.M. (2003): Clustering of variables around latent components. Communications in Statistics — Simulation and Computation, 32, 1131–1150.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin · Heidelberg

About this paper

Cite this paper

Sahmer, K., Vigneau, E., El Qannari, M., Kunert, J. (2005). Clustering of Variables with Missing Data: Application to Preference Studies. In: Weihs, C., Gaul, W. (eds) Classification — the Ubiquitous Challenge. Studies in Classification, Data Analysis, and Knowledge Organization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28084-7_22

Download citation

Publish with us

Policies and ethics