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1 Introduction

One of the key challenges in the development of open distributed systems is enabling
the exchange of meaningful information across applications which (i) may use au-
tonomously developed schemas for organizing locally available data, and (ii) need
to discover relations between schemas to achieve their users’ goals. Typical exam-
ples are databases using different schemas, and document repositories using different
classification structures.

In restricted environments, like a small corporate Intranet, this problem is typi-
cally addressed by introducing shared models (e.g., ontologies) throughout the entire
organization3. The idea is that, once local schemas are mapped onto a shared ontol-
ogy, the required relations between them is completely defined. However, in open
environments (like the Web), this approach can’t work for several reasons, includ-
ing the difficulty of ‘negotiating’ a shared model of data that suits the needs of all
parties involved, and the practical impossibility of maintaining such a shared model
in a highly dynamic environment. In this kind of scenarios, a more dynamic and
flexible method is needed, where no shared model can be assumed to exist, and
semantic relations between concepts belonging to different schemas must be dis-
covered on-the-fly. In other words, we need a sort of peer-to-peer form of semantic
coordination, in which two or moresemantic peers(i.e. agents with autonomously
developed schemas and possibly heterogeneous ontologies) discover relations across
their schemas and use them to provide the required services.

In this paper, we propose a general approach to the problem of discovering map-
pings across the schemas of two or more semantic peers. The method we propose
is intrinsically semantic, as the mappings it discovers between nodes of different
schemas are computed as a logical consequence of (1) the explicit representation of
the meaning of each node in the schemas, and (2) additional background knowledge
(if available). The method is illustrated and tested on a significant instance of the

3But see [3] for a discussion of the drawbacks of this approach from the standpoint of
Knowledge Management applications.
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problem, namely the problem of matching hierarchical classifications (HCs). The
main technical contribution of this part is an algorithm, called CTXMATCH, which
takes in input two HCsH andH ′ and, for each pair of conceptsk ∈ H andk′ ∈ H ′,
returns their semantic relation (called a mapping).

With respect to other methods proposed in the literature (often under different
‘headings’, such as schema matching, ontology mapping, semantic integration), the
main innovation of our approach is that mappings across elements belonging to dif-
ferent schemas are deduced via logical reasoning, rather then derived through (more
or less) complex heuristic techniques, and thus can be assigned a clearly defined
model-theoretic semantics. This shifts the problem of semantic coordination from
the problem of computing linguistic or structural similarities between schemas to
the problem of deducing relations between formulas that represent the meaning of
each concept in a schema. This explains, for example, why our approach performs
much better than most heuristic-based methods when two nodes intuitively represent
equivalent concetps, but occur in classification schemas which are structurally very
different.

The paper goes as follows. In Section 2 we introduce the main conceptual as-
sumptions of the new approach we propose to semantic coordination. In Section 3,
we present the main features of CTXMATCH, the proposed algorithm for coordi-
nating HCs. Finally, we compare our approach with other proposed approaches for
matching schemas (Section 4).

2 Our Approach

The method we propose assumes that we deal with a network ofsemantic peers,
namely physically connected entities which can autonomously decide how to orga-
nize locally available data (in this sense, each peer is a semantically autonomous
agent). Each peer can organize data using one or more schemas (e.g., database
schemas, directory trees in a file system, classification schemas, taxonomies, and
so on). Different peers may use different schemas to organize the same collection of
data, and conversely the same schema can be used to organize different collections
of data.

We also assume that semantic peers need to exchange data (e.g. documents clas-
sified under different classification schemas) to perform complex tasks. To do this,
each semantic peer needs to compute mappings between its local schema and other
peers’ schemas. Intuitively, a mapping can be viewed as a set of pairwise relations
between elements of two distinct schemas.

The first idea behind our approach is that mappings must be semantic relations,
namely relations with a well-defined model-theoretic interpretation. This is an im-
portant difference with respect to approaches based on matching techniques, where a
mapping is a measure of (linguistic, structural, . . . ) similarity between schemas (e.g.,
a real number between 0 and 1). The main problem with the latter techniques is that
the interpretation of their results is an open problem. For example, how should we
interpret a 0.9 similarity? Does it mean that one concept is slightly more general than
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Fig. 1.Mapping abstract structures

the other one? Or maybe slightly less general? Or that their meaning 90% overlaps
(whatever that means)? Instead, our method returns semantic relations, e.g. that the
two concepts are (logically) equivalent, or that one is (logically) more/less general,
or that they are mutually exclusive. As we will argue, this gives us many advantages,
essentially related to the consequences we can infer from the discovery of such a
relation.

The second idea is that, to discover semantic relations, one must make explicit
the meaning implicit in each element of a schema. The claim is that this is the only
way of computing semantic relations between elements of distinct schemas, and that
this can be done only for schemas in which meaningful labels are used. If this is
true, then addressing the problem of discovering semantic relations as a problem of
matching abstract graphs is conceptually wrong. To illustrate this point, consider the
difference between the problem of mapping abstract schemas (like those in Figure 1)
and the problem of mapping schemas with meaningful labels (like those in Figure 2).
Nodes in abstract schemas do not have an implicit meaning, and therefore, whatever
technique we use to map them, we will find that there is some relation between
the two nodesD in the two schemas which depends only on the abstract form of
the two schemas. The situation is completely different for schemas with meaningful
labels, as we can make explicit a lot of information that we have about the terms
which appear in the graph, and their relations (e.g., that Tuscany is part of Italy,
that Florence is in Tuscany, and so on). It’s only this information which allows us
to understand why the semantic relation between the two nodesMOUNTAINand the
two nodesFLORENCEis different, despite the fact that the two pairs of schemas are
structurally equivalent between them, and both are structurally isomorphic with the
pair of abstract schemas in Figure 1. Indeed, for the first pair of nodes, the set of
documents we would classify under the nodeMOUNTAINon the left hand side is a
subset of the documents we would classify under the nodeMOUNTAINon the right;
whereas the set of documents which we would classify under the nodeFLORENCE
in the left schema is exactly the same as the set of documents we would classify
under the nodeFLORENCEon the right hand side.

As a consequence, our method is mainly applied to schemas with labels which are
meaningful for the community of their users. This gives us the chance of exploiting
the complex degree of semantic coordination implicit in the way a community uses
the language from which the labels are taken. Notice that the status of this linguis-
tic coordination at a given time is already ‘codified’ in artifacts (e.g., dictionaries,
but today also ontologies and other formalized models), which provide senses for
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Fig. 2.Mapping schemas with meaningful labels

words and more complex expressions, relations between senses, and other important
knowledge about them. Our aim is to exploit these artifacts as an essential source of
constraints on possible/acceptable mappings across structures. The method is based
on the elicitation of the meaning associated to each node in a schema4. The semantic
elicitation process may require the use if three different levels of knowledge:

Lexical knowledge: knowledge about the words used in the labels. For example,
the fact that the word ‘Florence’ can be used to indicate ‘a city in Italy’ or ‘a city
in the South Carolina’ (homonymy), or the fact that ‘bachelor’ and ‘unmarried
man’ can mean the same thing (synonymy);

World Knowledge: knowledge about the relations between the concepts expressed
by words. For example, the fact that Tuscany is part of Italy, or that Florence is
in Italy;

Structural knowledge: knowledge which derives from how labeled nodes are ar-
ranged in a given schema. For example, the fact that the node labeledMOUNTAIN
is below a nodeIMAGEStells us that it classifies images of mountains, and not,
say, books about mountains.

As an example of how the three levels are used, consider again the mapping
between the two nodesMOUNTAINof Figure 2. Lexical knowledge is used to deter-
mine what concepts can be expressed by each label, e.g. that the word ‘Images’ can
denote the concept ‘a visual representation produced on a surface’. World knowledge
tells us, among other things, that Tuscany is part of Italy. Finally, structural knowl-
edge tells us that the intended meanings of the two nodesMOUNTAINis ‘images of
Tuscan mountains’ on the left hand side, and ‘images of Italian mountains’ on the
right hand side. Using this information, human reasoners (i) elicit the meaning ex-
pressed by the left hand node, (‘images of Tuscan mountains’, denoted byP ), (ii)

4Even though a discussion on the difference between schemas and ontologies is beyond
the scope of this paper, notice that schemas – such as the two classifications in Figure 2 –
cannot be viewed as straight ontologies – not evenlightweightontologies, as the information
they convey is mostly implicit in their labels, and in a body of knowledge associated with
labels. Indeed, we can say that a classification schema, as many other types of schemas, is a
very concise way of referring to complex concepts (like “images of Tuscan montains”), but
the identification of the concept corresponding to each element in a schema may require a lot
of semantic and world knowledge, which can only be made available to computer programs
via explicit semantic models (ontologies). See the rest of the paper for a practical illustration
of this point
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elicit the meaning expressed by the right hand node (‘images of Italian mountains’,
denoted byP ′), and finally (iii) derive the semantic relation between the meaning of
the two nodes, namely thatP v P ′ (intuitively, subsumption between the concepts
corresponding to the two schema elements).

These three levels of knowledge are used to produce a new, richer representation
of the schema, where the meaning of each node is made explicit and encoded as a
logical formula and a set of axioms. This formula is an approximation of the meaning
of the node when it occurs in that schema. The problem of discovering the semantic
relation between two nodes can now be stated not as a matching problem, but as a
relatively simple problem of logical deduction. Intuitively, as we will say in a more
technical form in the rest of the paper, determining whether there is an equivalence
relation between the meaning of two nodes can be encoded as a problem of testing
whether the first implies the second and vice versa (given a suitable collection of
axioms, which acts as a sort of background theory); and determining whether one
is less general than the other one amounts to testing if the first implies the second.
As we will say, in the current version of the algorithm we encode this reasoning
problem as a problem of logical satisfiability, and then compute mappings by feeding
the problem to a standard SAT solver.

3 The Algorithm: CTXMATCH

In this section we show how to apply the general approach described in the previ-
ous section to the problem of coordinatingHierarchical Classifications(hereafter
HCs), namely concept hierarchies [5] used for grouping/organizing/classifying data
(such as documents, goods, activities, services) in categories. Some well-known
examples of HCs are web directories (see e.g. the GoogleTM Directory or the
Yahoo!TMDirectory), file systems, document databases, . . .

In our approach, we assume the presence of a network of semantic peers, where
each peer is defined as follows:

Definition 1. A semantic peeris a triple 〈D,S, 〈L,O〉〉, where:

• D is a set of documents;
• S represents the set of schemas used by the peer for organizing its data;
• 〈L,O〉 is a pair composed by a lexiconL and some representationO of world

knowledge.

The structure of the semantic peer reflects the three levels of knowledge we
showed before:S represents structural knowledge,L contains lexical knowledge,
andO is world knowledge. Formally,L is a repository of pairs〈w,C〉, wherew is a
word andC is a set of concepts. Each pair〈w,C〉 represents the set of conceptsC de-
noted by a wordw. For example, a possible entry for a lexicon should express that the
word ‘fish’ can denote at least two concepts: ‘an aquatic vertebrate’ and ‘the twelfth
sign of zodiac’. An important example of this kind of repository is represented by
WORDNET [9]. A knowledge baseO expresses the set of relations holding between
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different concepts. For example, a knowledge baseO should express that the con-
cept ‘an aquatic vertebrate’ denoted by the word ‘fish’ stays in aIsA relation with
the concept of ‘animal’ (‘fish are animals’) and that the concept ‘the twelfth sign of
zodiac’ denoted by the same word ‘fish’ stays in aIsA relations with a geometrical
shape (‘fish is a geometrical shape’). Formally, knowledge base is a logical theory
written is a specific language, like OWL, Prolog clauses, DAML/OIL, RDFS.

Our method is designed for scenarios in which an agentA (called theseeker)
needs to find new documents relative to some category in its local HCSA. Imagine
that another agentB (called theprovider) owns a collection of potentially relevant
documents, but they are classified using a different HCSB . Our problem is to dis-
cover semantic relations betweenA’s original category inSA and the categories in
SB , and – based on the discovered relations – return the relevant documents.A and
B are called semantic peers because, as we will say, each of them has equivalent
capabilities and responsibilities in assigning meaning to the classification schemas
used to organize local documents, and in assigning documents to categories.

A collection of point-to-point relations between categories of two distinct HCs is
called a mapping:

Definition 2. A mappingM between two schemasS and S′ is a set of mapping
elements〈m,n,R〉 wherem is a node inS, n is anode inS′ andR is a semantic
relation betweenm andn.

In this version of the algorithm, five relations are allowed between the concepts
corresponding to two nodes belonging to different HCs:m w n (m is more general
thann); m v n (m is less general thann); m ≡ n (m is equivalentto n); m u n is
consistent (i.e. it has an interpretation which is not empty and thusm is compatible
with n); m u n v ⊥ (m is disjoint from n).

The algorithm CTXMATCH takes asinputs the seeker’s and the provider’s clas-
sification schemasS andS′, and the provider’s lexiconL and knowledge baseO5.
As it will become clear in what follows, this means that the resulting mapping is
directional, as it represents the provider’s point of view on the relation between
S andS′ (because it is based on the provider’s lexicon and knowledge base, and
thus on the provider’s understanding of the two schemas). As the seeker in principle
may use different lexical and background knowledge, a different mapping between
the same schemasS andS′ might be computed. The reason why here we privilege
the provider’s perspective is that it reflects the scenario in which an agent asks for
information to one or more agents, whose answers are necessarily based on their
understanding of the question.

Theoutput of the algorithm is a mappingM.

5In the version of the algorithm presented here, we use WORDNET both as a source of
lexical and world knowledge. However, WORDNET can be replaced by any other combination
of a lexical and a world knowledge source.
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Algorithm 1 CTXMATCH(S, S′, L,O)
. Hierarchical classificationsS, S′

. LexiconL

. knowledge baseO
VarDeclarations

contextualized concept〈φ,Θ〉 , 〈ψ, Υ 〉
relationR
mappingM

1 for each pair of nodesm ∈ S andn ∈ S′ do
2 〈φ,Θ〉← SEMANTIC–ELICITATION(m,S,L,O);
3 〈ψ, Υ 〉← SEMANTIC–ELICITATION(n, S′, L,O);
4 R← SEMANTIC–COMPARISON(〈φ,Θ〉 , 〈ψ, Υ 〉 , O);
5 M←M∪ 〈m,n,R〉;
6 Return M ;

The algorithm has essentially the following two main macro steps.

Steps 2–3 : in this phase, calledsemantic elicitation, the algorithm tries to interpret
pair of nodesm,n in the respective HCsS andS′ by means of the lexiconL
and the knowledge baseO. The idea is trying to generate a formula approxi-
mating the meaning expressed by a node in a structure (φ), and a set of axioms
formalizing relevant knowledge about it (Θ). Consider, for example, the node
FLORENCEin left lower HC of Figure 2: steps 2–3 will generate a formula ap-
proximating the statement ‘Images of Florence in Tuscany’ (φ) and an axiom
approximating the statement ‘Florence is in Tuscany’ (Θ). In our framework,
the pair〈φ,Θ〉, calledcontextualized concept, expresses the meaning of a node
in a structure.

Step 4 : in this phase, calledSemantic comparison, the problem of finding the se-
mantic relation between two nodesm andn is encoded as the problem of finding
the semantic relation holding between two contextualized concepts,〈φ,Θ〉 and
〈ψ, Υ 〉.

Finally, step 5 generates the mapping simply by reiteration of the same process
over all the possible pair of nodesm ∈ S n ∈ S′ and step 6 returns the mapping.

The two following sections describe in detail these two top-level operations, im-
plemented by the functionsSEMANTIC–ELICITATION andSEMANTIC–COMPARISON.

3.1 Semantic elicitation

In this phase we make explicit in a logical formula6 the meaning of a noden in a HC
S.

6The choice of the formal language depends on how expressive one wants to be in the
approximation of the meaning of nodes, and on the complexity of the NLP techniques used
to process labels. In this implementation we adopt the propositional fragment of Descrip-
tion logics, where each propositional letter corresponds to a concept (synset) provided by
WORDNET. However, in [18], a richer encoding is described which uses also the DL roles.
As an example, the nodeMOUNTAINof the left hand schema of Figure 2, now interpreted as
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Algorithm 2 SEMANTIC–ELICITATION (t, S, L,O)
. t is a node inS
. structureS
. lexiconL
. knowledge baseO

VarDeclarations
single conceptcon[]
set of formulasΣ
formulaδ

1 for each noden in S do
2 con[n]← EXTRACT–CANDIDATE–CONCEPTS(n,L);
3 Σ← EXTRACT–LOCAL-AXIOMS(t, S, con[], O);
4 con[]← FILTER–CONCEPTS(S,Σ, con[]);
5 δ← BUILD –COMPLEX–CONCEPT(t, S, con[]);
6 Return 〈δ,Σ〉;

In Step 1 and Step 2, the functionEXTRACT–CANDIDATE–CONCEPTSuses lex-
ical knowledge to associate to each word occurring in the nodes of an HC all con-
cepts possibly denoted by the word itself. Consider the lower left structure of Fig-
ure 2. The label ‘Florence’ is associated with two concepts, provided by the lexicon
(WORDNET), corresponding to ‘a city in central Italy on the Arno’ (florence#1 )
or a ‘a town in northeast South Carolina’ (florence#2 ). In order to maximize
the possibility of finding an entry into the Lexicon, we use both a postagger and a
lemmatizator over the labels7.

In Step 3, the functionEXTRACT–LOCAL–AXIOMS tries to define the ontolog-
ical relations existing between the concepts in a structure. Consider again the left
lower structure of Figure 2. Imagine that the concept ‘a region in central Italy’
(tuscany#1 ) has been associated to the nodeTUSCANY. The functionEXTRACT–
LOCAL–AXIOMS has the aim to discover if it exists some kind of relation be-
tween the conceptstuscany#1 , florence#1 andflorence#2 (associated to
nodeFLORENCE). Exploiting world knowledge, we can discover, for example, that
‘ florence#1 PartOf tuscany#1 ’, i.e. that there exists a ‘part of’ relation be-
tween the first sense of ‘Florence’ and the first sense of ‘Tuscany’. World knowl-
edge relations extracted from WORDNET are translated into logical axioms accord-
ing to Table 1. So, the relation ‘florence#1 PartOftuscany#1 ’ is encoded as
‘ florence#1 v tuscany#1 ’8.

(image#1 t . . .t image#8 )u tuscany#1 umountain#1 , is encoded as(image#1 t
. . . t image#8 ) u ∃about#3 .(mountain#1 u ∃locatedIn#2 .tuscany#1 ), namely
‘images about mountains that are located in Tuscany’.

7Although in this paper we present very simple examples, the NLP techniques exploited in
this phase allow us to handle labels containing complex expressions, as conjunctions, commas,
prepositions, expressions denoting exclusion, like ‘except’ or ‘but not’, multiwords and so on.

8For heuristical reasons – see [4] – we consider only relations between concepts on the
same path of a HC and their siblings.
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WORDNET World knowledge relations axiom

s#k synonymt#h s#k ≡ t#h
s#k { hyponym| PartOf} t#h s#k v t#h

s#k { hypernym| HasPart} t#h t#h v s#k
s#k antonymt#h (t#k u s#h ) v ⊥

Table 1.WORDNET relations and corresponding axioms.

Step 4 has the goal of filtering out unlikely senses associated to a node’s label.
Going back to the previous example, we tentatively discard one of the senses associ-
ated to the nodeFLORENCE(‘a town in northeast South Carolina’,florence#2 ),
based on the fact that we found the local axiom ‘florence#1 PartOftuscany#1 ’
which links the other sens of ‘Florence’ to a sense of ‘Tuscany’. This fact is used to
make the conjecture that the contextually relevant sense of Florence is the city in
Tuscany, and not the city in the USA. When ambiguity persists (because there are
axioms related to different senses, or no axioms at all), all possible senses are kept
and encoded as a disjunction.

Step 5 has the objective of building a complex concept (i.e., the meaning of a
node label when it occurs in a specific position in a schema) for nodes in HCs. As
described in [4], node labels are first processed one by one to build a preliminary
interpretation, calledsimple concept, which doesn’t take into account the position
of the node in the structure. For example, the simple concept associated to the node
FLORENCEof the left hand structure of Figure 2 is the atomflorence#1 (i.e. one
of the two senses provided by WORDNET and not discarded by filtering). Then, these
results are combined for generating a formula approximating the meaning expressed
by a nodein a schema. In this version of the algorithm, we choose to express the
meaning of a noden as the conjunction of the simple concepts associated to the nodes
lying in the path from the root node ton. So, the formula approximating the meaning
expressed by the nodeFLORENCEin that HC is(image#1 t . . . t image#8 ) u
tuscany#1 u florence#1 .

Step 6 returns the formula expressing the meaning of the node and the set of
local axioms found in Step 3. This formula represents what we call a contextualized
concept, namely a complex concept associated to a node in a schema, givenL and
O.

This explains why the set of contextualized concepts extracted from a HC can
be viewed as acontextin the sense of [11, 1], namely a partial and approximate
representation of the world from an individual’s perspective. Indeed, it reflects a
semantic peer’s perspective on a collection of documents. As we already pointed out,
the same schema can be transformed into a different context by different semantic
peers, as they might use a different lexiconL′ or different world knowledgeO′. This
explains why the mappings between the same pair of schemas computed by different
peers are not identical.
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3.2 Semantic comparison

The goal of this phase is to find the semantic relation which holds between two
contextualized concepts (associated to two nodes in different HCs).

In Step 1, the functionEXTRACT–RELATIONAL –AXIOMS tries to find axioms
which connect concepts belonging to different HCs. This function is similar to
EXTRACT–LOCAL–AXIOMS in the semantic elicitation part. Consider, for example,
the sensesitaly#1 andtuscany#1 associated respectively to nodesITALY and
TUSCANYof Figure 2: the relational axioms express the fact that, for example, ‘Tus-
cany PartOf Italy’ (tuscany#1 v italy#1 ).

Algorithm 3 SEM–COMP(〈φ,Θ〉,〈ψ, Υ 〉,O)
. contextualized concept〈φ,Θ〉, 〈ψ, Υ 〉
. world knowledgeO

VarDeclarations
set of formulasΓ
semantic relationR

1 Γ ← EXTRACT–RELATIONAL –AXIOMS(φ, ψ, O);
2 if Θ,Υ, Γ |= (φ u ψ) v ⊥ thenR← disjoint;
3 else ifΘ,Υ, Γ |= (φ ≡ ψ) thenR← equivalent;
4 else ifΘ,Υ, Γ |= (φ v ψ) thenR← less general than;
5 else ifΘ,Υ, Γ |= (ψ v φ) thenR←more general than;
6 elseR← compatible;
7 Return R;

In steps 2–6, the problem of finding the semantic relation between two nodesn
andm (line 2) is encoded into a satisfiability problem involving both the contex-
tualized concepts associated to the nodes and the relational axioms extracted in the
previous phases. So, to prove whether the two nodes labeledFLORENCEin Figure 2
are equivalent, we check the logical equivalence between the formulas approximat-
ing the meaning of the two nodes, given the local and the relational axioms. Formally,
we have the following satisfiability problem:

Θ florence#1 v tuscany#1
φ (image#1 t . . . t image#8 ) u tuscany#1 u florence#1
∆ florence#1 v italy#1
ψ (image#1 t . . . t image#8 ) u italy#1 u florence#1
Γ tuscany#1 v italy#1

It is simple to see that the returned relation is ‘equivalent’. Note that the satisfiability
problem for finding the semantic relation between the nodesMOUNTAINof Figure 2
is the following:

Θ ∅
φ (image#1 t . . . t image#8 ) u tuscany#1 umountain#1
∆ ∅
ψ (image#1 t . . . t image#8 ) u italy#1 umountain#1
Γ tuscany#1 v italy#1
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The returned relation is ‘less general than’.
Following on the idea that a semantically elicited schema is a context, a mapping

between two contextualized concepts belonging to different contexts can be formally
represented as acompatibility relation[10], namely a constraint on the local mod-
els of the two contexts. In this sense, the algorithm we present is a first attempt to
discover (rather than assume) relations over local models of two or more contexts
(which, from a proof–theoretical point of view, corresponds to discover bridge rules
[12] across contexts).

4 Related Work

Recently, many methods have been proposed for matching heterogeneous schemas
(see [17] for a well-known survey of the area). However, our method shifts the prob-
lem of semantic coordination from the problem of matching (in a more or less so-
phisticated way) schemas to the problem of inferring semantic relations between
the meaning of schema elements. Under this respect, to the best of our knowledge,
our approach is still original; an alternative (and partially extended) implementation,
called S-Match, was proposed in [8] as a rationalization of CTXMATCH. Therefore,
a straightforward comparison with other methods is not easy.

However, it is important to see how CTXMATCH compares with the performance
of techniques based on different approaches to semantic coordination. There are
four other families of approaches that we will consider: graph matching, automatic
schema matching, semi-automatic schema matching, and instance based matching.
For each of them, we will discuss the proposal that, in our opinion, is more sig-
nificant. The comparison is based on the following five dimensions: (1) if and how
structural knowledge is used; (2) if and how lexical knowledge is used; (3) if and
how knowledge base is used; (4) if instances are considered; (5) the type of result
returned. The general results of our comparison are reported in Table 2.

graph
matching CUPID MOMIS GLUE CTXMATCH

Structural
knowledge • • • •

Lexical
knowledge • • • •

Knowledge
base • •

Instance-
based
knowledge

•

Type of
result

Pairs of nodesSimilarity measure
∈ [0..1] between
pairs of nodes

Similarity measure
∈ [0..1] between
pairs of nodes

Similarity measure
∈ [0..1] between
pairs of nodes

Semantic relations
between pairs of
nodes

Table 2.Comparing CTXMATCH with other methods
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Fig. 3.Example of right and wrong mapping

In graph matching techniques, a concept hierarchy is viewed as a tree of labelled
nodes, but the semantic information associated to labels is substantially ignored. In
this approach, matching two graphsG1 andG2 means finding a sub-graph ofG2

which is isomorphic toG2 and report as a result the mapping of nodes ofG1 into the
nodes ofG2. These approaches consider only structural knowledge and completely
ignore lexical knowledge and knowledge base. Some examples of this approach are
described in [20, 19, 16, 15, 6].

CUPID [13] is a completely automatic algorithm for schema matching. Lexical
knowledge is exploited for discovering linguistic similarity between labels (e.g., us-
ing synonyms), while the schema structure is used as a matching constraint. That is,
the more the structure of the subtree of a nodes is similar to the structure of a subtree
of a nodet, the mores is similar tot. For this reason CUPID is more effective in
matching concept hierarchies that represent data types rather than hierarchical clas-
sifications. With hierarchical classifications, there are cases of equivalent concepts
occurring in completely different structures, and completely independent concepts
that belong to isomorphic structures. Two simple examples are depicted in Figure 3.
In case (a), CUPID does not match the two nodes labelled withITALY ; in case (b)
CUPID finds a match between the node labelled withFRANCEandENGLAND. The
reason is that CUPID combines in an additive way lexical and structural informa-
tion, so when structural similarity is very strong (for example, all neighbor nodes
do match), then a relation between nodes is inferred without considering labels. So,
for example,FRANCEandENGLANDmatch because the structural similarity of the
neighbor nodes is so strong that labels are ignored.

MOMIS (Mediator envirOnment for Multiple Information Sources) [2] is a set
of tools for information integration of (semi-)structured data sources, whose main
objective is to define a global schema that allows a uniform and transparent access to
the data stored in a set of semantically heterogeneous sources. One of the key steps
of MOMIS is the discovery of overlappings (relations) between the different source
schemas. This is done by exploiting knowledge in a Common Thesaurus together
with a combination of clustering techniques and Description Logics. The approach
is very similar to CUPID and presents the same drawbacks in matching hierarchical
classifications. Furthermore, MOMIS includes an interactive process as a step of
the integration procedure, and thus, unlike CTXMATCH, it does not support a fully
automatic and run-time generation of mappings.
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GLUE [7] is a taxonomy matcher that builds mappings taking advantage of in-
formation contained in instances, using machine learning techniques and domain-
dependent constraints, manually provided by domain experts. GLUE represents an
approach complementary to CTXMATCH. GLUE is more effective when a large
amount of data is available, while CTXMATCH is more performant when less data are
available, or the application requires a quick, on-the-fly mapping between structures.
So, for instance, in case of product classification such as UNSPSC or Eclss (which
are pure hierarchies of concepts with no data attached), GLUE cannot be applied.
Combining the two approaches is a challenging research topic, which can probably
lead to a more precise and effective methodology for semantic coordination.

5 Conclusions

In this paper we presented a new approach to semantic coordination in open and
distributed environments, and an algorithm (called CTXMATCH) that implements
this method for hierarchical classifications. CTXMATCH has been successfully tested
on real HCs (i.e., pre-existing classifications used in real applications) and the results
are described in [14].

An important lesson we learned from this work is that methods for semantic
coordinations should not be grouped together on the basis of the type of abstract
structure they deal with (e.g., DAGs, concept hierarchies), but on the basis of the
intended use of the structures under consideration. In this paper, we addressed the
problem of semantic coordination for hierarchical classifications, and the elicitation
method we proposed heavily relies on this assumption. However, there are other
possible uses for “similar” structures, e.g. specifying the conceptualization of some
domain (ontologies), describing web services (finite automata), describing data types
(schemas). This “pragmatic” level (i.e., the use of a schema) is essential to provide
the correct interpretation of a structure, and thus to discover the correct mappings
with other structures.

The importance we assign to the fact that HCs are labelled with meaningful ex-
pressions does not mean that we see the problem of semantic coordination as a prob-
lem of natural language processing (NLP). On the contrary, the solution we provided
is mostly based on knowledge representation and automated reasoning techniques.
However, the problem of semantic coordination is a fertile field for collaboration be-
tween researchers in knowledge representation and in NLP. Indeed, if in describing
the general approach one can assume that some linguistic analysis on labels is avail-
able and ready to use, real applications require a massive use of techniques and tools
from NLP, as a reliable, automatic analysis of labels from a linguistic point of view
is a necessary precondition for the quality of the algorithm’s results.

The work we presented is only the first step of a very ambitious scientific chal-
lenge, namely to investigate what is the minimal common ground needed to en-
able communication between autonomous entities that cannot look into each oth-
ers head, and thus can achieve some degree of semantic coordination only through
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other means, like exchanging messages, passing examples, pointing to things, re-
membering past interactions, generalizing from past communications, and so on. To
this end, a lot of work remains to be done. In particular, we stress that CTXMATCH

is a one-shot method for discovering relations across static schemas; however, much
more interesting is the problem of dynamically adapting the schemas (or their in-
terpretation) as a result of the interaction between two (or more) semantic peers.
This much more general task is what we call meaning negotiation (as opposed to
meaning coordination), where peers may try to find an agreement on the meaning
of schemas, or even update/change their lexical/background knowledge to achieve a
more satisfactory mapping with other peers. This project seems quite exciting and
challenging, as it requires to go beyond pure meaning, and take into account other
dimensions like a cost/benefit analysis of changing a schema, updating/changing a
body of lexical and/or background knowledge, redefining mappings across schemas.
This economics of meaningis a completely new field, whose crucial relevance for
large-scale projects (like the Semantic Web) and semantic-based applications have
been recognized only recently, and where new models and tools need to be developed
from scratch.
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