Skip to main content

LES of Shock Wave/Turbulent Boundary Layer Interaction

  • Conference paper
High Performance Computing in Science and Engineering’ 05

Summary

Well-resolved Large-Eddy Simulations (LES) are performed in order to investigate flow phenomena and the turbulence structure of the boundary layer along a supersonic compression ramp. The numerical simulations directly reproduce an available experiment. The compression ramp has a deflection angle of β= 25°. The mean free-stream Mach number is M∞ = 2.95. The Reynolds number based on the incoming boundary-layer thickness is Reδ0 = 63560 in accordance with the reference experiment. About 18.5 ✖ 106 grid points are used for discretizing the computational domain. For obtaining mean flow and turbulence structure the flow is sampled 1272 times over 703 characteristic time scales. Statistical data are computed from these samples. An analysis of the data shows a good agreement with the experiment in terms of mean quantities and turbulence structure. The computational data confirm theoretical and experimental results on fluctuation-amplification across the interaction region. In the wake of the main shock a shedding of shocklets is observed. The temporal behavior of the coupled shock-separation system agrees well with experimental data. Unlike previous DNS the present simulation data provide indications for a large-scale shock motion. Also evidence for the existence of threedimensional large-scale stream-wise structures, commonly referred to as Görtler-like vortices, is found.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. A. Adams. Direct numerical simulation of turbulent compression corner flow. Theor. Comp. Fluid Dyn., 12:109–129, 1998.

    Article  MATH  Google Scholar 

  2. N. A. Adams. Direct simulation of the turbulent boundary layer along a compression ramp at M = 3 and Reθ = 1685. J. Fluid Mech., 420:47–83, 2000.

    Article  MATH  Google Scholar 

  3. Y. Andreopoulos, J. H. Agui, and G. Briassulis. Shock wave-turbulence interactions. Annu. Rev. Fluid Mech., 32:309–345, 2000.

    Article  MathSciNet  Google Scholar 

  4. A. V. Borisov, S. S. Vorontsov, A. A. Zheltovodov, A. A. Pavlov, and S. I. Shpak. Development of experimental and computational methods of studies of supersonic separated flows. Preprint 9-93 ITAM, RAS SB, 1993. (in Russian).

    Google Scholar 

  5. D. S. Dolling. Fifty years of shock-wave/boundary-layer interaction research: What next? AIAA J., 39:1517–1531, 2001.

    Google Scholar 

  6. D. S. Dolling and M. T. Murphy. Unsteadiness of the separation shock wave structure in a supersonic compression ramp flowfield. AIAA J., 12:1628–1634, 1983.

    Article  Google Scholar 

  7. D. S. Dolling and C. T. Or. Unsteadiness of the shock wave structure in attached and separated compression ramp flows. Exp. in Fluids, 3:24–32, 1985.

    Article  Google Scholar 

  8. J. M. Floryan. On the Görtler instability of boundary layers. Prog. Aerospace Sci., 28:235–271, 1991.

    Article  MATH  Google Scholar 

  9. D. D. Knight and G. Degrez. Shock wave boundary layer interactions in high mach number flows — a critical survey of current CFD prediction capabilities. Technical Report AR-319, AGARD Report, 1998.

    Google Scholar 

  10. D. D. Knight, H. Yan, A. G. Panaras, and A. A. Zheltovodov. Advances in CFD prediction of shock wave turbulent boundary layer interactions. Progress in Aerospace Sciences, 39:121–184, 2003.

    Article  Google Scholar 

  11. S. K. Lele. Compact Finite Difference Schemes with Spectral-like Resolution. J. Comp. Phys., 103:16–42, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  12. M. S. Loginov, N. A. Adams, and A. A. Zheltovodov. LES of shock wave / turbulent boundary layer interaction. In E. Krause, W. Jäger, and M. Resch, editors, High Performance Computing in Science and Engineering 04, pages 177–188, 2004.

    Google Scholar 

  13. S. Stolz, N. A. Adams, and L. Kleiser. The approximate deconvolution model for LES of compressible flows and its application to shock-turbulent-boundarylayer interaction. Phys. Fluids, 13:2985–3001, 2001.

    Article  Google Scholar 

  14. A. A. Zheltovodov. Peculiarities of development and modeling possibilities of supersonic turbulent separated flows. In V. V. Kozlov and A. V. Dovgal, editors, Separated Flows and Jets: IUTAM Symposium, pages 225–236. Springer-Verlag Berlin Heidelberg, 1991. Novosibirsk, USSR July 9–13, 1990.

    Google Scholar 

  15. A. A. Zheltovodov. Shock waves/turbulent boundary-layer interactions-fundamental studies and applications. Number 96-1977 in AIAA Paper. 1996.

    Google Scholar 

  16. A. A. Zheltovodov, E. Schülein, and V. N. Yakovlev. Development of turbulent boundary layer under conditions of mixed interaction with shock and expansion waves. Preprint 28-83 ITAM, USSR Academy of Sciences, Siberian Branch, 1983. (in Russian).

    Google Scholar 

  17. A. A. Zheltovodov and V. N. Yakovlev. Stages of development, flowfield structure and turbulence characteristics of compressible separated flows in the vicinity of 2-D obstacles. Preprint 27-86 ITAM, USSR Academy of Sciences, Siberian Branch, 1986. (in Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Loginov, M.S., Adams, N.A., Zheltovodov, A.A. (2006). LES of Shock Wave/Turbulent Boundary Layer Interaction. In: Nagel, W.E., Resch, M., Jäger, W. (eds) High Performance Computing in Science and Engineering’ 05. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29064-8_17

Download citation

Publish with us

Policies and ethics