Skip to main content

4 Conclusions

We simulated the A1C13 liquid and found mainly dimers that are connected in the edge-sharing configuration. However, there were also other configurations such as trimers, tetramers and pentamers. The simulated data will be further analyzed to see whether the small amount of larger angles is due to the monomers or due to a small amount of corner-sharing dimers or even larger clusters such as trimer, tetramers or pentamers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. S. Badyal, D. A. Allen, and R. A. Howe. The strutcure of liquid A1C13 and structural modification in A1C13-MCL (M=Li,Na) molten salt mixtures. J. Phys.: Condens. Matter, 6:10193–10220, 1994.

    Article  Google Scholar 

  2. A. D. Becke. Density-functional exchange-energy approxiation with correct asymptotic behavior. Phys. Rev. A, 38:3098–3100, 1988.

    Article  Google Scholar 

  3. R. Car and M. Parrinello. Unified approach for molecular dynamics and density functional theory. Phys. Rev. Lett., 55:2471, 1985.

    Article  Google Scholar 

  4. J. Hutter et al. CPMD. IBM Research Division, Zürich Research Lab. MPI für Festkörperforschung, Stuttgart 1995–1999. MPI FKF, Stuttgart/Zürich, 1995.

    Google Scholar 

  5. L. Kleinman and D. M. Bylander. Efficacious form for model pseudopotentials. Phys. Rev. Lett., 48:1425, 1982.

    Article  Google Scholar 

  6. C. Lee, W. Yang, and R. G. Parr. Development of the colle-salvetti correlation energy formula into a functional of the electron density. Phys. Rev. B, 37:785–789, 1988.

    Article  Google Scholar 

  7. J. P. Perdew, K. Burke, and M. Ernzerhof. Phys. Rev. Lett., 77:3865, 1996.

    Article  Google Scholar 

  8. N. Troullier and J. L. Martins. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B, 43:1993–2006, 1991.

    Article  Google Scholar 

  9. T. Welton. Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis. Chem. Rev., 99:2071–2083, 1999.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kirchner, B., Seitsonen, A.P., Hutter, J., Hess, B.A. (2006). Ionic Liquids from A1C13. In: Nagel, W.E., Resch, M., Jäger, W. (eds) High Performance Computing in Science and Engineering’ 05. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29064-8_21

Download citation

Publish with us

Policies and ethics