Skip to main content

Electron-doping Evolution of the Quasiparticle Band of the Cuprates

  • Conference paper
High Performance Computing in Science and Engineering’ 05
  • 679 Accesses

Summary

We present a numerical study of the doping dependence of the spectral function of the n-type cuprates. Using cluster-perturbation theory and the self-energy-functional approach, we calculate the spectral function of the Hubbard model with next-nearest neighbor electronic hopping amplitude t′ = -0.35t and on-site interaction U = 8t at half filling and doping levels ranging from x = 0.077 to x = 0.20. We show that a comprehensive description of the single particle spectrum of the electron doped cuprates is only possible within a strongly correlated model. Weak coupling approaches that are based upon a collapse of the Mott gap by vanishing on-site interaction U are ruled out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. P. Armitage, F. Ronning, D. H. Lu, C. Kim, A. Damascelli, K. M. Shen, D. L. Feng, H. Eisaki, Z.-X. Shen, P. K. Mang, N. Kaneko, M. Greven, Y. Onose, Y. Taguchi, and Y. Tokura. Doping dependence of an n — type cuprate superconductor investigated by arpes. Phys. Rev. Lett., 88:257001, 2002.

    Article  Google Scholar 

  2. W. Brenig. Aspects of electron correlations in the cuprate superconductor. Phys. Rep., 251:154, 1995.

    Article  Google Scholar 

  3. C. Dahnken, M. Aichhorn, W. Hanke, E. Arrigoni, and M. Potthoff. Variational cluster approach to spontaneous symmetry breaking: The itinerant antiferromagnet in two dimensions. cond-mat/0309407, 2003.

    Google Scholar 

  4. A. Dorneich, M. G. Zacher, C. Gröber, and R. Eder. Strong coupling theory for the hubbard model. cond-mat/9909352, 1999.

    Google Scholar 

  5. Daniel Duffy, Alexander Nazarenko, Stephan Haas, Adriana Moreo, Jose Riera, and Elbio Dagotto. Hole doping evolution of the quasiparticle band in models of strongly correlated electrons for the high — Tc cuprates. cond-mat/9701083, 1997.

    Google Scholar 

  6. C. Dürr, S. Legner, R. Hayn, S. V. Borisenko, Z. Hu, A. Theresiak, M. Knupfer, M. S. Golden, J. Fink, F. Ronning, Z.-X. Shen, H. Eisaki, S. Uchida, C. Janowitz, R. Müller, R. L. Johnson, K. Rossnagel, L. Kipp, and G. Reichardt. Angle-resolved photoemission spectroscopy of sr2cuo2cl2. Phys. Rev. B, 63:014505, 2001.

    Article  Google Scholar 

  7. R. Eder and Y. Ohta. Photoemission spectra of the t — J model in 1 and 2D: similarities and differences. Phys. Rev. B, 56:2542, 1997.

    Article  Google Scholar 

  8. Heinz Endres. Physik des Hubbard-Modells zwischen einer und zwei Dimensionen. PhD thesis, 1996.

    Google Scholar 

  9. C. Göber, R. Eder, and W. Hanke. Anomalous low-doping phase of the hubbard model. Phys. Rev. B, 62:4336, 2000.

    Article  Google Scholar 

  10. C. Gröber. Dynamic Properties of Strongly Correlated Electron Systems. PhD thesis, Universität Würzburg, 1999.

    Google Scholar 

  11. Claudius Gros and Roser Valenti. Cluster expansion for the self-energy: A simple many-body method for interpreting the photoemission spectra of correlated fermi systems. Phys. Rev. B, 48:418–425, 1993.

    Article  Google Scholar 

  12. J. E. Hirsch. Stable monte carlo algorithm for fermion lattice systems at low temperatures. Phys. Rev. B, 38(16):12023–12026, December 1988.

    Article  Google Scholar 

  13. J. Hubbard. Proc. R. Soc. London, 276:238, 1963.

    Article  Google Scholar 

  14. C. Kusko, R.S. Markiewicz, M. Lindroos, and A. Bansil. Fermi surface evolution and collapse of the mott pseudogap in nd2-x cexcuo4. Physical Review B, 66:140513R, 2002.

    Article  Google Scholar 

  15. C. Lanczos. J. Res. Nat. Bur. Stand., 45:255, 1950.

    MathSciNet  Google Scholar 

  16. S. LaRosa, I. Vobornik, F. Zwick, H. Berger, M. Grioni, G. Margaritondo, R. J. Kelley, M. Onellion, and A. Chubukov. Electronic structure of cuo2 planes: From insulator to superconductor. Phys. Rev. B, 56:R525–R528, 1997.

    Article  Google Scholar 

  17. Walter Metzner. Linked — cluster expansion around the atomic limit of the hubbard model. Phys. Rev. B, 43:8549, 1991.

    Article  Google Scholar 

  18. R. M. Noack, S. R. White, and D. J. Scalapino. The Density Matrix Renormalization Group for Fermion Systems. Spinger Verlag, Heidelberg, Berlin, 1994.

    Google Scholar 

  19. Stéphane Pairault, David Sénéchal, and A.-M. S. Tremblay. Strong — coupling expansion for the hubbard model. Phys. Rev. Lett., 80:5389, 1998.

    Article  Google Scholar 

  20. Stephane Pairault, David Senechal, and A. M. S. Tremblay. Strong — coupling perturbation theory of the hubbard model. Eur. Phys. J. B, 16:85, 2000.

    Article  Google Scholar 

  21. R. Preuss, W. Hanke, and W. von der Linden. Quasiparticle dispersion of the 2D hubbard model: From an insulator to a metal. Phys. Rev. Lett., 75:1344–1347, 1995.

    Article  Google Scholar 

  22. F. Ronning, C. Kim, K.M. Shen, N.P. Armitage, A. Damascelli, D.H. Lu, D.L. Feng, Z.-X. Shen, L.L. Miller, Y.-J. Kim, F. Chou, and I. Terasaki. Universality of the electronic structure from a half filled cuo2 plane. cond-mat/0209651, 2002.

    Google Scholar 

  23. D. Senechal, D. Perez, and M. Pioro-Ladriere. The spectral weight of the hubbard model through cluster perturbation theory. Phys. Rev. Lett., 84:522–525, 2000.

    Article  Google Scholar 

  24. David Senechal, Danny Perez, and Dany Plouffe. Cluster perturbation theory for hubbard models. Phys. Rev. B, 66:075129, 2002.

    Article  Google Scholar 

  25. David Senechal and A.-M.S. Tremblay. Hot spots and pseudogaps for the hole-and electron-doped high-temperature superconductors. Phys. Rev. Lett., 92:126401, 2004.

    Article  Google Scholar 

  26. T. Tohyama and S. Maekawa. Angle — resolved photoemission in high tc cuprates from theoretical viewpoints. Supercond. Sci. Technol., 13:R17, 2000.

    Article  Google Scholar 

  27. B. O. Wells, Z.-X. Shen, A. Matsuura, D. M. King, M. A. Kastner, M. Greven, and R. J. Birgeneau. E versus k relations and many body effects in the model insulating copper oxide sr2cuo2cl2. Phys. Rev. Lett., 74:964–967, 1995.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dahnken, C., Potthoff, M., Arrigoni, E., Hanke, W. (2006). Electron-doping Evolution of the Quasiparticle Band of the Cuprates. In: Nagel, W.E., Resch, M., Jäger, W. (eds) High Performance Computing in Science and Engineering’ 05. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29064-8_3

Download citation

Publish with us

Policies and ethics