Skip to main content

Numerical Simulations of Quantum Gases, Magnetic, and Correlated Electronic Systems

  • Conference paper
High Performance Computing in Science and Engineering’ 05
  • 674 Accesses

Summary

A variety of quantum Monte Carlo algorithms are used to study the equilibrium properties of strongly correlated quantum systems relevant to the fields of high-Tc superconductivity and magnetism. Furthermore, a new exact numerical method was developed and applied to strongly correlated quantum gases to unveil their universal properties in equilibrium and new states of matter out of equilibrium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Alet, S. Wessel, and M. Troyer, Phys. Rev. E 71, 036706 (2005).

    Article  Google Scholar 

  2. P. A. Bares and G. Blatter and M. Ogata, Phys. Rev. B 44, 130 (1991)

    Article  Google Scholar 

  3. G. G. Batrouni, V. Rousseau, R. T. Scalettar, M. Rigol, A. Muramatsu, P. J. H. Denteneer, and M. Troyer, Phys. Rev. Lett. 89, 117203 (2002).

    Article  Google Scholar 

  4. K. S. D. Beach, cond-mat/0403055

    Google Scholar 

  5. H. J. M. van Bemmel, D. F. B. ten Haaf, W. van Saarlos, J. M. J. van Leeuwen and and G. An, Phys. Rev. Lett. 72, 2442 (1994).

    Article  Google Scholar 

  6. H. Benthien and F. Gebhard and E. Jeckelmann, Phy. Rev. Lett. 92, 256401 (2004).

    Article  Google Scholar 

  7. R. Blankenbecler, R. L. Sugar, and D. J. Scalapino, Phys. Rev. D 24, 2278 (1981).

    Article  Google Scholar 

  8. E. Dagotto, Rev. Mod. Phys. 66, 763 (1994).

    Article  Google Scholar 

  9. M. Duneau, R. Mosseri, and C. Oguey, J. Phys. A 22, 4549 (1989).

    Article  MathSciNet  Google Scholar 

  10. V. J. Emery and S. A. Kivelson and H.Q. Lin, Phys. Rev. Lett. 64, 475 (1990).

    Article  Google Scholar 

  11. H. G. Evertz, Adv. Phys. 52, 1 (2003).

    Article  Google Scholar 

  12. D. F. B. ten Haaf, H. J. M. van Bemmel, J. M. J. van Leeuwen, W. van Saarloos and D. M. Ceperley Phys. Rev. B 51, 13039 (1995).

    Article  Google Scholar 

  13. V. Inozemtsev, J. Stat. Phys. 59, 1143 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  14. P. Jordan and E. Wigner, Z. Phys. 47, 631, (1928).

    Article  Google Scholar 

  15. G. Khaliullin, JETP Lett. 52, 389 (1990).

    Google Scholar 

  16. T. Kinoshita, T. Wenger, and D. S. Weiss, Science 305, 1125 (2004).

    Article  Google Scholar 

  17. N. Kitanine, J.M. Maillet, N. A. Slanov, and V. Terras, Nucl. Phys. B 642, 433 (2002), and references therein.

    Article  Google Scholar 

  18. C. Lavalle, M. Arikawa, S. Capponi, F. Assaad, and A. Muramatsu, Phys. Rev. Lett. 90, 216401 (2003).

    Article  Google Scholar 

  19. C. Lavalle, M. Arikawa and A. Muramatsu, in preparation.

    Google Scholar 

  20. R. Lifshitz and S. Even-Dar Mandel, Acta Cryst. A 60, 167 (2004).

    Article  MathSciNet  Google Scholar 

  21. A. Muramatsu, in Quantum Monte Carlo Methods in Physics and Chemistry, edited by M.P. Nightingale and C.J. Umrigar, (Kluwer Academic, Dordrecht, 1999).

    Google Scholar 

  22. M. Ogata and M.U. Lucchini and S. Sorella and F.F. Assaad, Phys. Rev. Lett. 66, 2388 (1991)

    Article  Google Scholar 

  23. B. Paredes, A. Widera, V. Murg, O. Mandel, S. Fölling, I. Cirac, G. V. Shlyapnikov, T. W. Hänsch, and I. Bloch, Nature 429, 277 (2004).

    Article  Google Scholar 

  24. K. Penc and K. Hallberg and F. Mila and H. Shiba Phys. Rev. Lett. 77, 1390 (1996)

    Article  Google Scholar 

  25. M. Rigol, A. Muramatsu, G.G. Batrouni, R.T. Scalettar, Phys. Rev. Lett. 91, 130403 (2003).

    Article  Google Scholar 

  26. M. Rigol and A. Muramatsu, Phys. Rev. A 70, 031603(R) (2004).

    Google Scholar 

  27. M. Rigol and A. Muramatsu, Phys. Rev. Lett. 93, 230404 (2004).

    Article  Google Scholar 

  28. M. Rigol and A. Muramatsu, Phys. Rev. A 69, 053612 (2004).

    Article  Google Scholar 

  29. M. Rigol and A. Muramatsu, Phys. Rev. A 70, 043627 (2004).

    Article  Google Scholar 

  30. M. Rigol and A. Muramatsu, Opt. Commun. 243, 33 (2004).

    Article  Google Scholar 

  31. S. Rommer, S. R. White, D. J. Scalapino, Phys. Rev. B 61, 13424 (2000)

    Article  Google Scholar 

  32. A. W. Sandvik, Phys. Rev. B 59 R14157 (1999).

    Article  Google Scholar 

  33. J. Sato, H. Takakura, A. P. Tsai, K. Shibata, K. Ohoyama, and K. H. Andersen, Phys. Rev. B 61, 476 (2000).

    Article  Google Scholar 

  34. For a review see: Quantum Magnetism, Lecture Notes in Physics 645, U. Schollwöch, J. Richter, D.J.J. Farnell, R.F. Bishop, Eds., Springer-Verlag Berlin, 2004.

    Google Scholar 

  35. S. Sorella and A. Parola, Phys. Rev. B 57, 6444 (1998).

    Article  Google Scholar 

  36. S. Sorella and L. Capriotti, Phys. Rev. B. 61, 2599 (1999).

    Article  Google Scholar 

  37. T. Stöferle, H. Moritz, C. Schori, M. Köhl, and T. Esslinger, Phys. Rev. Lett. 92, 130403 (2004).

    Article  Google Scholar 

  38. G. Sugiyama and S. E. Koonin, Anals of Phys. 168, 1 (1986).

    Article  Google Scholar 

  39. S. Wessel, A. Jagannathan, and S. Haas, Phys. Rev. Lett. 90, 177205 (2003).

    Article  Google Scholar 

  40. S. Wessel, Phys. Rev. Lett. 94, 029701 (2005).

    Article  Google Scholar 

  41. S. Wessel and I. Milat, Phys. Rev. B 71, 104427 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lavalle, C., Pertot, D., Rigol, M., Wessel, S., Muramatsu, A. (2006). Numerical Simulations of Quantum Gases, Magnetic, and Correlated Electronic Systems. In: Nagel, W.E., Resch, M., Jäger, W. (eds) High Performance Computing in Science and Engineering’ 05. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29064-8_5

Download citation

Publish with us

Policies and ethics