Skip to main content

Large-Scale Simulations for Understanding Surface Optical Spectra

  • Conference paper
High Performance Computing in Science and Engineering’ 05
  • 705 Accesses

Summary

Surface optical spectroscopies are non-destructive and capable of operation within a wide range of environments. Their potential for materials characterization can only be exploited fully, however, when the physical mechanisms giving rising to optical features are well understood. Here we use large-scale numerical simulations to investigate two highly relevant and at the same time prototypical cases from first principles: (i) the origin of the optical anisotropy oscillations accompanying the thermal oxidation of Si(001) and (ii) the modification of the Si(001) surface optical response upon adsorption of 9,10-phenanthrenequinone. It is demonstrated to what extent strain, molecular transitions and adsorption-modified Si bulk wave functions contribute to the surface optical anisotropy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. R. Del Sole, Solid State Commun. 37, 537 (1981).

    Article  Google Scholar 

  2. F. Manghi, R. Del Sole, A. Selloni, and E. Molinari, Phys. Rev. B 41, 9935 (1990).

    Article  Google Scholar 

  3. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

    Article  MathSciNet  Google Scholar 

  4. W. Kohn and L. Sham, Phys. Rev. 140, A1133 (1965).

    Article  MathSciNet  Google Scholar 

  5. P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).

    Article  Google Scholar 

  6. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  Google Scholar 

  7. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Article  Google Scholar 

  8. J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).

    Article  Google Scholar 

  9. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671 (1992).

    Article  Google Scholar 

  10. P. Pulay, Chem. Phys. Lett. 73, 393 (1980).

    Article  Google Scholar 

  11. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  MathSciNet  Google Scholar 

  12. J. Dabrowski and H.-J. Müssig, Silicon Surfaces and Formation of Interfaces (World Scientific, Singapore, 2000).

    Google Scholar 

  13. T. Yasuda, S. Yamasaki, M. Nishizawa, N. Miyata, A. Shklyaev, M. Ichikawa, T. Matsudo, and T. Ohta, Phys. Rev. Lett. 87, 037403 (2001).

    Article  Google Scholar 

  14. T. Yasuda, M. Nishizawa, N. Kumagai, S. Yamasaki, H. Oheda, and K. Yamabe, Thin Solid Films 455-456, 759 (2004).

    Article  Google Scholar 

  15. H. Watanabe, K. Kato, T. Uda, K. Fujita, M. Ichikawa, T. Kawamura, and K. Terakura, Phys. Rev. Lett. 80, 345 (1998).

    Article  Google Scholar 

  16. H. Kageshima and K. Shiraishi, Phys. Rev. Lett. 81, 5936 (1998).

    Article  Google Scholar 

  17. T. Nakayama and M. Murayama, Appl. Phys. Lett. 77, 4286 (2000).

    Article  Google Scholar 

  18. A. Incze, R. Del Sole, and G. Onida, Phys. Rev. B 71, 035350 (2005).

    Article  Google Scholar 

  19. W. G. Schmidt, F. Fuchs, A. Hermann, K. Seino, F. Bechstedt, R. Paßmann, M. Wahl, M. Gensch, K. Hinrichs, N. Esser, S. Wang, W. Lu, and J. Bernholc, J. Phys.: Condens. Matter 16, S4323 (2004).

    Article  Google Scholar 

  20. F. Fuchs, W. G. Schmidt, and F. Bechstedt, J. Phys. Chem. B (accepted).

    Google Scholar 

  21. T. Yamasaki, K. Kato, and T. Uda, Phys. Rev. Lett. 91, 146102 (2003).

    Article  Google Scholar 

  22. R. Shioda and J. van der Weide, Phys. Rev. B 57, R6823 (1998).

    Article  Google Scholar 

  23. W. G. Schmidt, F. Bechstedt, and J. Bernholc, Phys. Rev. B 63, 045322 (2001).

    Article  Google Scholar 

  24. K. Fujita, H. Watanabe, and M. Ichikawa, Appl. Phys. Lett. 70, 2807 (1997).

    Article  Google Scholar 

  25. C. A. Hacker and R. J. Hamers, J. Phys. Chem. B 107, 7689 (2003).

    Article  Google Scholar 

  26. L. Fang, J. Liu, S. Coulter, X. Cao, M. P. Schwartz, C. Hacker, and R. J. Hamers, Surf. Sci. 514, 362 (2002).

    Article  Google Scholar 

  27. A. Hermann, W. Schmidt, and F. Bechstedt, J. Phys. Chem. B 109, 7928 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schmidt, W.G., Hermann, A., Fuchs, F., Preuss, M. (2006). Large-Scale Simulations for Understanding Surface Optical Spectra. In: Nagel, W.E., Resch, M., Jäger, W. (eds) High Performance Computing in Science and Engineering’ 05. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29064-8_6

Download citation

Publish with us

Policies and ethics