Skip to main content

Abstract

The first stage in an adaptive finite element scheme (cf. [CAS95, bor1]) consists in creating an initial mesh of a given domain Ω, which is used to perform an initial computation (for example a flow solver). A size specification field is deduced (e.g. at the vicinity of each mesh vertex, the desired mesh size is specified), based on the numerical results. If the mesh does not satisfy the size specification field, then a new constrained mesh, governed by this field, is constructed. The size specification field is usually obtained via an error estimate [FOR, VER96]. Actually, the estimation gives a discrete size specification field. Using an adequate size interpolation over the mesh elements, a continuous field is then obtained.

Metrics are commonly used to normalize the mesh size specification to one in any direction (cf. [VAL92]), and are defined as a symmetric positive definite matrix associated to any point of the domain.

A classical adaptation loop is: 0 Build a initial mesh \(\mathcal{T}_h^0 \) 1 loop \(i\) = 0, ...

  • • Solve your problem on mesh \(\mathcal{T}_h^i \)

  • • Compute an error indicator , and if the error is small enough then stop.

  • • Compute a metric \(\mathcal{M}^{i + 1} \),

  • • Bound, regularize the metric \(\mathcal{M}^{i + 1} \),

  • • Compute a new unit mesh \(\mathcal{T}_h^{i + 1} \) with respect to the new metric.

In this kind of algorithm, there are two problematic cases:

  1. One)

    if the minimal mesh size is reached then we generally lose the anisotropy of the mesh in this region.

  2. Two)

    In the adaptation loop, we use a hidden scheme to evaluate the metric, so some-times the mesh size to compute a good approximation of the solution is incompatible with the scheme to get a good approximation of the metric.

First, we do the numerical experiment to show this two snags. All the experiments are done with FreeFem++ software , see [freefempp, DAN03].

In this article we present the classical mesh adaptation with metric in section 2. And in section 3 we present the first trouble and some way to solve it. In section 4, a second problem is described and we explain when it occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Alauzet, Adaptation de maillage anisotrope en trois dimensions. Application aux simulations instationnaires en manique des fluides, The de doctorat de l’UniversitMontpellier nuII, 2003.

    Google Scholar 

  2. H. Borouchaki H., M.J. Castro-Diaz, P.L. George, F. Hecht and B. Mohammadi, Anisotropic adaptive mesh generation in two dimensions for CFD 5th Inter. Conf. on Numerical Grid Generation in Computational Field Simulations, Mississipi State Univ., 1996.

    Google Scholar 

  3. H. Borouchaki, P.L. George, F. Hecht, P. Laug and E. Saltel, Delaunay Mesh Generation Governed by Metric Specifications. Part I: Algorithms., Finite Elements in Analysis and Design, 25, pp. 61–83, 1997.

    Article  MathSciNet  Google Scholar 

  4. H. Borouchaki, P.L. George and B. Mohammadi, Delaunay Mesh Generation Governed by Metric Specifications. Part II: Applications., Finite Elements in Analysis and Design, 25, pp. 85–109, 1997.

    Article  MathSciNet  Google Scholar 

  5. M.J. Castro-Díaz, F. Hecht, and B. Mohammadi, New progress in anisotropic grid adaptation for inviscid and viscid flows simulation, 4th International Mesh Roundtable, Albuquerque, New-Mexico, october 1995.

    Google Scholar 

  6. M.J. Castro-Diaz, F. Hecht F. and B. Mohammadi Anisotropic Grid Adaptation for Inviscid and Viscous Flows Simulations IJNMF, Vol. 25, 475–491, 2000.

    MathSciNet  Google Scholar 

  7. I. Danaila, F. Hecht, and O. Pironneau. Simulation numérique en C++. Dunod, Paris, 2003.

    Google Scholar 

  8. Frey P.J. et george P.L., Maillages, Hermès, Paris, 1999.

    Google Scholar 

  9. M. Fortin, M.G. Vallet, J. Dompierre, Y. Bourgault and W.G. Habashi Anisptropic Mesh Adaption: Theory, Validation and Applications, Eccomas 96, PARIS CFD book, pp 174–199.

    Google Scholar 

  10. W. Habashi et al. A Step toward mesh-independent and User Independent CFD Barriers and Challenges in CFD, pp. 99–117, Kluwer Ac. pub.

    Google Scholar 

  11. F. Hecht and B. Mohammadi Mesh Adaptation by Metric Control for Multi-scale Phenomena and Turbulence AIAA, paper 97-0859, 1997.

    Google Scholar 

  12. F. Hecht The mesh adapting software: bamg. INRIA report 1998. http://www-rocq.inria.fr/gamma/cdrom/www/bamg/eng.htm.

    Google Scholar 

  13. F. Hecht, K. Ohtsuka, and O. Pironneau. FreeFem++ manual. Universite Pierre et Marie Curie, 2002-2005. on the web at http://www.freefem.org/ff++/index.htm.

    Google Scholar 

  14. M.G. Vallet, Génération de maillages Éléments Finis anisotropes et adaptatifs, thèse Université Paris VI, Paris, 1992.

    Google Scholar 

  15. R. Verfürth, A review of a posteriori error estimation and adaptive refinement techniques, Wiley Teubner, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hecht, F. (2005). A fews snags in mesh adaptation loops. In: Hanks, B.W. (eds) Proceedings of the 14th International Meshing Roundtable. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29090-7_18

Download citation

  • DOI: https://doi.org/10.1007/3-540-29090-7_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25137-8

  • Online ISBN: 978-3-540-29090-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics