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Summary. We develop an automated all-hex meshing strategy for bifurcation ge-
ometries arising in subject-specific computational hemodynamics modeling. The key
components of our approach are the use of a natural coordinate system, derived from
solutions to Laplace’s equation, that follows the tubular vessels (arteries, veins, or
grafts) and the use of a tripartitioned-based mesh topology that leads to balanced
high-quality meshes in each of the branches. The method is designed for situations
where the required number of hexahedral elements is relatively small (∼ 1000–
4000), as is the case when spectral elements are employed in simulations at transi-
tional Reynolds numbers or when finite elements are employed in viscous dominated
regimes.

1 Introduction

We develop an automated all-hex meshing strategy for bifurcation geome-
tries arising in subject-specific computational hemodynamics modeling. Our
strategy is designed for the spectral element method (SEM) but works equally
well for hex-based finite volume or finite element methods. Similar to the finite
element method, the SEM is a high-order weighted residual technique featur-
ing isoparametric hexahedral (hex) elements that are globally assembled into
an unstructured mesh. A distinguishing feature of spectral element meshes
is that they generally require orders of magnitude fewer elements than their
finite-element counterparts because each spectral element typically contains
100s to 1000s of gridpoints. This reduction often poses significant challenges
for conventional approaches to automated hex-mesh generation because there
are relatively few interior elements over which to apply smoothing in order to
absorb topological corrections that arise from, say, merging advancing fronts.
It is of interest, therefore, to construct meshes having intrinsically compati-
ble geometries and topologies. For most hemodynamic flow domains, which
primarily comprise tubes and bifurcations, there are decompositions that are
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readily tessellated by hexahedra using sweeping methods [8, 9]. The chal-
lenge, however, is to develop robust, fast, and fully automated schemes for
patient-specific geometries, which often feature tortuous passages with sharp
curvature and (in the presence of stenoses) rapid variation in diameter. An
additional complication, separate from the question of meshing is that the
geometry is not well defined but must generally be inferred from slice-based
medical images that are often highly pixelated with respect to the vessel di-
ameter. Certainly, the geometry definition, which involves image registration
and segmentation, is an integral part of the automated procedure, but we do
not discuss it further here. We also note that, while the mesh generation tech-
niques proposed here are designed specifically for vascular flow geometries,
they could be adapted to work equally well in other internal flow configura-
tions involving bifurcating channels.

2 Background and Flow Modeling

During the past two decades, the role of hemodynamics, or fluid mechanics of
blood flow, has been implicated in the development of arterial disease and in
the regulation of cellular biology in both normal and diseased arteries [5, 6].
Vascular disease, including atherosclerosis, aneurysms, and plaque disruption
is one of the leading causes of death in the United States. A number of meth-
ods are being used to investigate the hemodynamic forces in the vascular
system, with computational fluid dynamics (CFD) becoming the most preva-
lent because of its ability to provide more detailed flow information than either
in vivo or in vitro experiments. Although significant insight has been gained
from CFD simulations in idealized vascular geometries, geometry clearly has
a dominant influence on the local hemodynamics and there is a consequent
need for subject-specific vascular flow modeling [7].

While the natural flow state in the vasculature is laminar, it is possible
to have a transition to a weakly turbulent state in the presence of stenoses
(blockages) or subsequent to surgical procedures such as arteriovenous graft
implantation [12]. The transition to turbulence induces a sudden change in
the range of spatial and temporal scales in the solution, resulting in a need
for two to three orders of magnitude increase in computational resources for
the same physical-time simulation. The flow physics in the turbulent case is
dominated by convection of momentum with relatively little diffusion. The
non-dimensional ratio of these two processes is denoted as the Reynolds num-
ber, which is typically Re ∼ 350 in healthy vessels but can reach as high as
Re=1000–3000 in the transitional cases. For simulations in the high Reynolds
number regime where physical dissipation is small, it is beneficial to use high-
order numerical discretizations that have minimal numerical dispersion and
dissipation per grid point [2].

Our numerical approach is based on the SEM, which is a high-order
weighted residual technique that combines the geometric flexibility of the
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finite element method (FEM) with the rapid convergence and tensor-product
efficiencies of global spectral methods. In the SEM, the domain is decomposed
into E curvilinear hexahedral elements, and the solution within each element
is represented as an Nth-order tensor-product nodal-based (Lagrange) poly-
nomial. For three-dimensional problems, there are approximately EN3 grid-
points in the entire domain.

We remark that high-order methods do not circumvent the need to resolve
flow structures such as boundary layers and vortices. Both low- and high-
order methods must capture the predominant structures. In the FEM the
requisite resolution is attained by varying E, whereas in the SEM the resolu-
tion is attained through a combined variation of E and N , with N=8–12 being
typical. For the same resolution (i.e., number of gridpoints) the number of el-
ements for an SEM discretization would be two to three orders of magnitude
smaller than its FEM counterpart. For example, typical SEM discretizations
of a bifurcation geometry involve 1000–4000 elements, whereas typical FEM
discretizations involve > 105 elements. Because there are so few elements, it
is critical that the SEM mesh topology and geometry be relatively free of
the point and line dislocations that can result when two or more mesh fronts
converge when using advancing front or similar generalized meshing meth-
ods. For the FEM, achieving this topology is less of a problem because mesh
smoothing can be used to effectively spread the geometric penalty arising from
such topological defects over a large number of elements. For the SEM, mesh
smoothing is also important but is more constrained by the (topological) prox-
imity of the boundaries. Fortunately, for the class of geometries that we are
considering here, which comprises blood vessels and bifurcations, high-quality
all-hex decompositions exist, and we are able to exploit this domain-specific
information to develop a robust and fully automated meshing procedure that
works equally well for the SEM and, through mesh refinement, for the FEM.

3 Vessel Surface Definition

Currently, we are using noncompact radial basis functions (RBFs) to repre-
sent the vessel surface [1]. We opted for noncompact RBF for the following
reasons: (i) the initial point cloud was noise-free, (ii) the number of points was
reasonable to be handled by ordinary Linux machines, and (iii) noncompact
thin-plate RBFs provide smooth surfaces. The RBF-based implicit surface
construction requires a set of known interpolating points that we construct
as follows. Given surface points xj , j = 1, . . . , n, we identify a set of external
points, yk, k = 1, . . . , m, near the surface using an oct-tree algorithm that
marches inward with successively smaller boxes from the edges of a bounding
box. With the known oct-tree topology, we identify as external points the cen-
ters of small empty boxes adjacent to those containing surface points. From
these, we define a signed distance and construct an interpolating RBF, φ(x),
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that vanishes at all xj and matches the signed distance at all yk. The surface
where φ(x) ≡ 0 defines the vessel wall.

The radial basis function is evaluated on a set of structured points, and the
φ = 0 surface is then triangulated by using the marching cubes algorithm [11].
This surface triangulation is then smoothed by using Taubin’s nonshrinking
smoothing algorithm [17, 18]. It was observed that RBF-based surface is not
accurate near the end-caps. These sites are locations where artificial boundary
conditions are applied in the blood-flow simulations and are thus not required
to be physically correct. We therefore cut the end-caps and triangulated the
surface cuts using Shewchuck’s Triangle software [15].

4 Conduction-Based Sweeping

To introduce the basic elements of our bifurcation meshing procedure, we
consider a simpler model problem, namely, the meshing of a curvilinear tube
representative of an artery or vein. The strategy is to employ a sweeping
algorithm, in which one projects a templated quadrilateral O-grid onto speci-
fied cross-sections of the tube and connects corresponding vertices in adjacent
cross-sections to form a hex mesh. The central element to our meshing strat-
egy is to develop a natural coordinate system that follows the undulating
vessel and satisfies two criteria:

Criterion 1: no two cross-sections intersect, and
Criterion 2: each cross-section is orthogonal to the vessel wall.

A robust approach to producing such a coordinate system is to solve Laplace’s
equation in the vessel with Dirichlet boundary conditions at the tube ends and
homogeneous Neumann conditions along the tube wall. This corresponds to
a steady thermal conduction problem with, say, temperature α = 0 at one
end, α = 1 at the other, and ∇α · n̂ = along the sidewalls, where n̂ is the
outward pointing normal. Once α is known, selecting a set of isosurfaces for
a monotonically increasing sequence of temperatures 0 = α

1
< α

2
< . . . <

αm = 1 will produce a set of cross-sections that satisfy the desired non-
intersecting and orthogonality conditions. These surfaces often have double
curvature like a potato chip and are therefore termed chips. The αis can
be chosen such that chips have the desired separation in Euclidean space. A
typical set of chips and a 12-element O-grid template are shown in Fig. 1.

We note that potential-based grid generation is a well-established tech-
nique [19], particularly for external flow configurations, where analytical solu-
tions to Laplace’s equation can readily be computed. In the present case, one
needs a base mesh in order to solve the conduction (i.e., potential) problem.
Fortunately, Laplace’s equation is very well conditioned and virtually any rea-
sonable mesh/discretization pairing is up to the task, particularly because we
are not concerned with accuracy but only with satisfying the non-intersection
and orthogonality criteria. We therefore employ linear finite elements for the
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Fig. 1. (a) Isosurfaces of α in an isolated vessel. (b) Level-0 O-grid template.

conduction problem. Starting with a surface triangulation, we build a tetra-
hedral mesh using the advancing front algorithm [13]. We then construct the
finite element Laplacian, apply the requisite boundary conditions, and solve
the sparse linear system by using conjugate gradient iteration. The surface tri-
angulation is smoothed by using Taubin’s non-shrinking algorithm [17]. With
α known, the O-grid is swept through the domain and projected onto chips
where α(x) = αi. The O-grid template is aligned by minimizing the Euclidian
distance between the “S” points (Fig. 1b) when the template is mapped onto
adjacent chips. The remaining edge points are distributed according to ar-
clength. The interior point distribution is parameterized by using local polar
coordinates, with arclength acting as the azimuthal variable, and the radial
coordinate normalized by the distance from the chip centroid to the perimeter.

5 Bifurcation Geometries

Our bifurcation meshing strategy is based on a tripartition of the domain
into three tubes, each of which is meshed using a variant of the sweeping
algorithm described in the preceding section. This approach yields minimal
elemental deformation and balanced resolution in each branch. (The initial
mesh can be further improved through mesh smoothing techniques [4, 14] and
the local resolution enhanced through p- or h-type refinement, e.g., [3].) Our
original implementation of the tripartition algorithm was based on a series
of cross-sections that were orthogonal to the plane containing the bifurcation
[8, 9]. Such an approach, however, is not robust because it does not guarantee
Criteria 1 and 2. We therefore extend this tripartition approach to incorporate
the natural coordinate system introduced in Section 4.

We demonstrate that, in addition to satisfying Criteria 1 and 2, the Lapla-
cian isosurfaces provide a robust and natural tripartition of the bifurcation
geometry. We begin by noting that any two of the three branches may be
swept by solving Laplace’s equation with α = 0 on one end-cap, α = 1 on
another, and ∇α · n̂ = 0 elsewhere. The third branch can be swept by cycli-
cally permuting these boundary conditions and solving a second conduction
problem. For symmetry and for completeness of the algorithm, we solve three
conduction problems in total, each having, in turn, one branch insulated while
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Table 1. Boundary Conditions for Bifurcation Conduction Problems

Problem ΓA ΓB ΓC

A: ∇
2α = 0 0 = ∇α · n̂ α = −αP α = 1 − αP

B: ∇
2β = 0 β = 1 − βP 0 = ∇β · n̂ β = −βP

C: ∇
2γ = 0 γ = −γP γ = 1 − γP 0 = ∇γ · n̂

the other two have end-caps at different fixed values. Denoting the branches
as A, B, and C, with respective end-caps ΓA, ΓB, and ΓC , we solve conduction
problems for α, β, and γ satisfying the boundary conditions listed in Table 1.
For each case, the Dirichlet values have been shifted by a constant (denoted
with subscript P ) so that the temperature at the center of the insulated end-
cap is zero. The isosurfaces that (nominally) emanate from these centerpoints
are referred to as the principal isosurfaces and, with the shift, correspond to
α = 0, β = 0, and γ = 0.

The solutions for problems A–C are shown in Fig. 2 for a stenosed carotid
artery bifurcation. A critical observation is that, to the level of truncation
error, the principal isosurfaces intersect in a unique curve, as illustrated in Fig.
2d. (Uniqueness is further discussed in Appendices A and B.) These isosurfaces
consequently serve to tripartition the bifurcation, as required for our sweeping
strategy. In addition, they provide the bisecting “plane” that is required to
orient the O-grid so that element boundaries are aligned with the cusp of each
branch where it connects to the bifurcation. Thus six subdomains are defined
by the principal isosurfaces: three branches, each having two halves. Denoting
the half of branch A that connects to B by AB, and so on for each half,
we formally identify “half-chips” in subdomains AB and BA with isosurfaces
of γ, those in BC and CB with isosurfaces of α, and those in CA and AC

with isosurfaces of β. As in Section 4, the chips defining adjacent slabs of hex
elements are found by choosing α-isosurfaces (or β- or γ-) that yield a desired
Euclidean separation. (Hereon, unless otherwise indicated, we will restrict our
discussion to the problem of meshing the A-branch using isosurfaces of β and
γ, with the understanding that the procedure for the other branches follows
from symmetry.)

Refinements to the Approach

In infinite-precision arithmetic, the approach outlined above would suffice to
mesh each branch in its entirety. A modest complication arises because the
insulated branch assumes a nearly uniform temperature as one moves away
from the bifurcation. Choosing αP so that the temperature in the insulated
branch is close to zero and then recomputing α provides several significant
digits that would otherwise be lost and allows one to more precisely identify
the principal isosurface. Nevertheless, it is often difficult to identify the princi-
pal isosurface more than two diameters away from the bifurcation, as is clear
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from Fig. 2. For two reasons, this situation is not a particular problem. First,
we note that identifying the principal isosurface near the bifurcation is a very
robust procedure. In exact arithmetic, all isosurfaces in the insulated branch
collapse exponentially fast to the principal isosurface as one approaches the
bifurcation. Thus, starting from any point in the insulated branch, one can
use a marching tetrahedra algorithm and arrive at the principal isosurface.
Second, away from the bifurcation, the principal isosurface merely serves as a
guide to orient the O-grid and is not really needed. In the extremal regions,
the O-grid can be mapped to either constant-β or constant-γ surfaces (for the
A-branch), as the two families are indistinguishable. Thus, away from the bi-
furcation, we simply pick one of two solutions (e.g., β or γ) and sweep toward
the extremity (A) following the procedure of Section 4.

Summary of Approach

With the basic concepts in hand, we summarize the steps of the procedure as
follows:

1. Starting from a noncompact RBF representation, construct a triangula-
tion of the vessel surface.

2. Apply Taubin smoothing [17] to the surface triangulation.
3. Use the advancing front algorithm to construct a preliminary tet mesh of

the domain volume.
4. Using linear finite elements and conjugate gradient iteration, solve con-

duction problems for α, β, and γ (Table 1) with αP = βP = γP = 0.
5. Set αP , βP , and γP to the negative of their respective insulated end-

cap centerpoint values and recompute α, β, and γ. (Iterate on Step 5, if
needed.)

6. Identify the α = 0 principal isosurface with marching tets, and compute β
and γ on this surface using the corresponding marching-tet interpolants.

7. Use marching triangles to identify the β = 0 and γ = 0 curves on the
α = 0 principal isosurface. Average these curves to determine a common
representation of the trisection curve. Identify the centerpoint (measured
in arc-length) of the trisection curve as the origin, O.

8. On the A-branch, march outward from O on the α = 0 surface a user-
specified distance δ (typ., δ ≈ 1/4D, where D is the local vessel diameter).
Denote the corresponding point as x

1
.

9. Find the values β
1

:= β(x
1
) and γ

1
:= γ(x

1
), and compute the correspond-

ing isosurfaces β(x) = β
1

and γ(x) = γ
1

with marching tets. Identify the
first pair of half-chips with these isosurfaces.

10. Repeat Steps 8 and 9, generating points xi and corresponding isosurfaces
until the dihedral angle of the β(x) = βi and γ(x) = γi chips at xi is
< 10◦; then switch to the single-chip algorithm of Section 4 using either
β or γ as the coordinate.

11. Starting at O, project templated O-grids onto each chip or half-chip pair.
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Fig. 2. Isosurfaces for conduction problems A (a), B (b), and C (c) of Table 1; (d)
intersection of principal isosurfaces.
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Fig. 3. Templated chips in a bifurcation geometry.

12. Smooth the quadrilateral surface mesh using Taubin smoothing, and
project the smoothed points onto the triangulated chip surface.

13. Repeat Steps 8–12 for branches B and C.
14. Consistently order each contour on each chip with respect to the principal

isosurface half-chips.
15. Construct the hexahedral volume mesh taking two adjacent chips at a

time.

Figure 3 shows the resulting templated chip set for the stenosed carotid
bifurcation. A close up of the half-chips on the principal isosurfaces that trisect
the bifurcation are shown in Fig. 3b.

6 Results

We have successfully used an earlier variant of this approach, developed in
[8, 9], to build several meshes for the study of transition in vascular flows
[10, 12], This earlier mesh construction approach involved several disjoint
pieces of software and required significant user expertise to produce an ac-
ceptable mesh. Typical turnaround time was on the order of five to ten days.
Our current focus is on streamlining the entire procedure so that it is fully
automated and requires minimal user input.

The current development code is in C++ and uses the Matrix Template
Library [16] to solve the linear equations for the RBF and heat conduction
problems. The RBF coefficients were computed by using direct solves, whereas
the conduction problems were solved with Jacobi-preconditioned conjugate
gradient iteration. Table 2 shows preliminary performance results on a Linux
2.4 GHz Pentium IV machine with a breakdown of the CPU time for each
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phase. We stress that this initial development code has not been optimized.
The turnaround for the entire procedure has nonetheless been reduced to a
matter of minutes, rather than days.

Table 2. Timing for Automated Generation of Carotid Bifurcation Mesh

Function Time ( in Seconds )

RBF coefficients evaluation 450
RBF function evaluation on box 90.0
Marching cube for φ = 0 evaluation 2
Taubin surface fairing 1
Trimming end sections 0.5
Solution of three heat equations 400
Principal chips construction 1
Split chips construction 2
Simple chips construction 4
Mesh template 0.5
Surface smoothing 0.001
Volume mesh 0.0001

7 Future Directions

Our goal is to provide rapid generation of a quality hex mesh for vascular flow
geometries, starting with a sliced-based stack of medical images (i.e., CT-scan
or MRI). presently, we are using commercial software to segment the images.
This will be replaced by a snake algorithm that is incorporated as a module
in our mesh generation software. With all the modules in place, we will tackle
optimization of the algorithms described in the preceding sections. In particu-
lar, we expect significant performance gains by using multigrid to precondition
the thermal conduction problems. Similar performance gains are expected by
improving the RBF approach. For instance, we have been investigating the
use of multilevel RBFs that yield sparse coefficient matrices.
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Fig. 4. Two-dimensional model problem showing common intersection point z∗ for
isopotentials α, β, and γ.

Appendix A

Our assertion that the three principal isosurfaces intersect in a unique one-
dimensional curve is based primarily on observation of tens of two- and three-
dimensional cases. Here, we demonstrate that uniqueness holds rigorously
for a special class of two-dimensional geometries, namely, for an arbitrary
distribution of source, sink, and isocontour points on a circle.

Consider the two-dimensional potential problem in the unit-disk having a
point source at B and a point sink of equal strength at C, as illustrated in
Fig. 4. The general solution in the complex z-plane is

u + iv = ln
z − B

z − C
+ c,

with u and v real-valued, i :=
√
−1, and c arbitrary. The isopotentials (cor-

responding to isothermal surfaces in Fig. 2) are given by isocontours of the
real part of the solution, u, and in this case are circular arcs. The isosurface
passing through A is given by

α :=

{

z :

∣

∣

∣

∣

z − B

z − C

∣

∣

∣

∣

=

∣

∣

∣

∣

A − B

A − C

∣

∣

∣

∣

}

. (1)

Cyclically permuting the role of A, B, C yields a new problem with isocontour
β passing through B given by

β :=

{

z :

∣

∣

∣

∣

z − C

z − A

∣

∣

∣

∣

=

∣

∣

∣

∣

B − C

B − A

∣

∣

∣

∣

}

. (2)

The intersection of α and β is given by the point z∗ that simultaneously
satisfies (1) and (2). Inserting z∗, multiplying (1) and (2), and inverting the
result shows that z∗ also satisfies

∣

∣

∣

∣

z∗ − A

z∗ − B

∣

∣

∣

∣

=

∣

∣

∣

∣

C − A

C − B

∣

∣

∣

∣

, (3)
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Fig. 5. Two-dimensional model problem illustrating exponential convergence of
end-cap isosurfaces to the principal isosurface.

which implies that z∗ is also an element of γ, the third principal isocontour
obtained by again permuting the roles of A, B, and C. Thus, the intersection
of the principal isocontours α, β, and γ is unique.

Note that this class of solutions can be immediately extended to any do-
main Ω that whose boundaries are given by isocontours of v. Such boundaries
are orthogonal to the isopotential lines and an arbitrary choice of these bound-
aries does not affect the solution u. Thus, the result is immediately applicable
to football and crescent shaped domains. Numerical evidence suggests that
the result holds for any simply connected domain in lR2, but we’ve yet to
rigorously establish this generalization.

Appendix B

The model problem of Appendix A employed idealized point sources and sinks
to establish the unique intersection point of the three principal isosurfaces.
In our meshing application, we have set the entire end-caps to be either a
fixed temperature or insulated. Strictly speaking, we can no longer expect
uniqueness of the intersection point because there is an infinity of isosur-
faces emanating from the insulated end-cap. The following example, however,
illustrates that these isosurfaces collapse exponentially fast to the principal
isosurface. Consider the computational domain Ω with (x, y) ∈ [0, L]× [− 1

2
, 1

2
]

indicated by the gray region in Fig. 5, which is a two-dimensional model of an
insulated branch having unit diameter D. To first order, we can approximate
the potential at the left edge of the domain as T (0, y) = sinπy, for which the
solution is T = sin πy coshπ(x − L)/ coshπL. An isosurface emanating from
the right at (L, y

0
) is given by

y = sin−1

[

sin πy
0

cosh π(L − x)

]

,

which establishes the exponential convergence to the principal isosurface. Sev-
eral such isosurfaces are shown in the figure. As an example, if L = 5D, then
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the maximum separation of any isosurface pair emanating from the end-cap
is < 5.e − 7 at the bifurcation point.
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