Skip to main content

An All-Hex Meshing Strategy for Bifurcation Geometries in Vascular Flow Simulation

  • Conference paper
Proceedings of the 14th International Meshing Roundtable
  • 969 Accesses

Summary

We develop an automated all-hex meshing strategy for bifurcation geometries arising in subject-specific computational hemodynamics modeling. The key components of our approach are the use of a natural coordinate system, derived from solutions to Laplace’s equation, that follows the tubular vessels (arteries, veins, or grafts) and the use of a tripartitioned-based mesh topology that leads to balanced high-quality meshes in each of the branches. The method is designed for situations where the required number of hexahedral elements is relatively small (∼ 1000-4000), as is the case when spectral elements are employed in simulations at transitional Reynolds numbers or when finite elements are employed in viscous dominated regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J.C. Carr, W.R. Fright, and R.K. Beatson. Surface interpolation with radial basis functions for medical imaging. IEEE Trans Med. Imaging, 16:96–107, 1997.

    Article  Google Scholar 

  2. M.O. Deville, P.F. Fischer, and E.H. Mund. High-order methods for incompressible fluid flow. Cambridge University Press, Cambridge, 2002.

    MATH  Google Scholar 

  3. P.F. Fischer, G.W. Kruse, and F. Loth. Spectral element methods for transitional flows in complex geometries. J. Sci. Comput., 17:81–98, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  4. [FKS+95]_M. H. Friedman, B. D. Kuban, P. Schmalbrock, K. Smith, and T. Altan. Fabrication of vascular replicas from magnetic resonance images. J. Biomech. Eng., 117:364–366, 1995.

    Google Scholar 

  5. L. Freitag and P. Plassmann. Local optimization-based simplical mesh untangling and improvement. Int. J. Numer. Methods Eng., 48:109–125, 2000.

    Article  Google Scholar 

  6. D. N. Ku. Blood flow in arteries. Annu. Rev. Fluid Mech., 29:399–434, 1997.

    Article  MathSciNet  Google Scholar 

  7. [LAF+03]_F. Loth, N. Arslan, P. F. Fischer, C. D. Bertram, S. E. Lee, T. J. Royston, R. H. Song, W. E. Shaalan, and H. S. Bassiouny. Transitional flow at the venous anastomosis of an arteriovenous graft: Potential relationship with activation of the erk1/2 mechanotransduction pathway. ASME J. Biomech. Engr., 125:49–61, 2003.

    Article  Google Scholar 

  8. W.E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3d surface construction algorithm. In SIGGRAPH’ 87: Proceedings of the 14th annual conference on Computer graphics and interactive techniques, pages 163–169, New York, NY, USA, 1987. ACM Press.

    Google Scholar 

  9. S.E. Lee. Solution method for transitional flow in a vascular bifurcation based on in vivo medical images. Master’s thesis, Univ. of Illinois, Chicago, 2002. Dept. of Mechanical Engineering.

    Google Scholar 

  10. [LFL+05]_S.W. Lee, P.F. Fischer, F. Loth, T.J. Royston, J.K. Grogan, and H.S. Bassiouny. Flow-induced vein-wall vibration in an arteriovenous graft. ASME J. Fluid-Structures (to appear), 2005.

    Google Scholar 

  11. [LPL+00]_S.E. Lee, N. Piersol, F. Loth, P. Fischer, G. Leaf, Smith B., Yedevalli R., A. Yardimci, N. Alperin, and L. Schwartz. Automated mesh generation of an arterial bifurcation based upon in vivo mr images. Proceedings of the 2000 World Congress on Medical Physics and Bioengineering, CD ROM, 2000.

    Google Scholar 

  12. D.L. Marcum. Efficient generation of high quality unstructured surface and volume grids. October 2–5,2000.

    Google Scholar 

  13. T. S. Munson. Mesh shape-quality optimization using the inverse mean-ratiometric. Preprint ANL/MCS-P1136-0304, Argonne National Laboratory, Argonne, Illinois, 2004.

    Google Scholar 

  14. D. L. Marcum and N. P. Weatherill. Unstructured grid generation using iterative point insertion and local reconnction. AIAA Journal, AIAA,, 33, Num 9:1619–1625, September 1995.

    Article  MATH  Google Scholar 

  15. Giddens D. P., C.K. Zarins, and S. Glagov. The role of fluid mechanics in the localization and detection of atherosclerosis. J. Biomech. Eng., 115:588–594, 1993.

    Google Scholar 

  16. J. Shewchuk. Delaunay Refinement Mesh Generation. PhD thesis, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, May 1997. Available as Technical Report CMU-CS-97-137.

    Google Scholar 

  17. J. Siek and A. Lumsdaine. Generic programming for high performance numerical linear algebra.http://www.osl.iu.edu/research/mtl.

    Google Scholar 

  18. G. Taubin. A signal processing approach to fair surface design. In SIGGRAPH’ 95: Proceedings of the 22nd annual conference on Computer graphics and interactive techniques, pages 351–358, New York, NY, USA, 1995. ACM Press.

    Google Scholar 

  19. J.E. Thompson, Z.U.A. Warsi, and C. W. Mastin. Numerical Grid Generation. Elsevier Science Publisging Co., 1985.

    Google Scholar 

  20. G. Taubin, T. Zhang, and G. H. Golub. Optimal surface smoothing as filter design. In ECCV’ 96: Proceedings of the 4th European Conference on Computer Vision-Volume I, pages 283–292, London, UK, 1996. Springer-Verlag.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Verma, C.S., Fischer, P.F., Lee, S.E., Loth, F. (2005). An All-Hex Meshing Strategy for Bifurcation Geometries in Vascular Flow Simulation. In: Hanks, B.W. (eds) Proceedings of the 14th International Meshing Roundtable. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29090-7_22

Download citation

  • DOI: https://doi.org/10.1007/3-540-29090-7_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25137-8

  • Online ISBN: 978-3-540-29090-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics