
Value-Based Software Engineering

Stefan Biffl · Aybüke Aurum · Barry Boehm ·
Hakan Erdogmus · Paul Grünbacher (Eds.)

123

Value-Based
Software
Engineering
With 69 Figures and 41 Tables

Library of Congress Control Number: 2005930639

ACM Computing Classification (1998): D.2.1, D.2.8, D.2.9, D.2.10, K.6.1, K.6.3

This work is subject to copyright. All rights are reserved, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting,
reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in
any other way, and storage in data banks. Duplication of this publication or
parts thereof is permitted only under the provisions of the German Copyright
Law of September 9, 1965, in its current version, and permission for use must
always be obtained from Springer. Violations are liable for prosecution under
the German Copyright Law.

Springer is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2006

The use of general descriptive names, registered names, trademarks, etc. in this
publication does not imply, even in the absence of a specific statement, that such
names are exempt from the relevant protective laws and regulations and therefore
free for general use.

Cover design: KünkelLopka, Heidelberg
Typesetting: Camera ready by the editors
Production: LE-TeX Jelonek, Schmidt & Vöckler GbR, Leipzig

Printed on acid-free paper 45/3142/YL - 5 4 3 2 1 0

Editors
Stefan Biffl
Institute for Software Technology
Vienna University of Technology
Karlsplatz 13
1040 Wien, Austria
stefan.biffl@tuwien.ac.at

Aybüke Aurum
School of Information Systems,
Technology and Management
University of New South Wales
Sydney, NSW 2052, Australia
aybuke@unsw.edu.au

Barry Boehm
Center for Software Engineering
University of Southern California
941 W 37th Place,
Los Angeles, CA 90089-0781, USA
boehm@sunset.usc.edu

Hakan Erdogmus
Software Engineering
NRC Institute for Information
Technology
National Research Council Canada
Building M50, 1200 Montreal Rd.
Ottawa, ON, Canada K1A 0R6
Hakan.Erdogmus@nrc-cnrc.gc.ca

Paul Grünbacher
Systems Engineering & Automation
Johannes Kepler University Linz
Altenbergerstr. 69
4040 Linz, Austria
paul.gruenbacher@jku.at

ISBN 978-3-540-25993-0 ISBN 978-3-540-29263-0 (eBook)
DOI 10.1007/978-3-540-29263-0

Foreword

Ross Jeffery

When, as a result of pressure from the CEO, the Chief Information Officer poses
the question “Just what is this information system worth to the organization?” the
IT staff members are typically at a loss. “That’s a difficult question,” they might
say; or “well it really depends” is another answer. Clearly, neither of these is very
satisfactory and yet both are correct. The IT community has struggled with ques-
tions concerning the value of an organization’s investment in software and hard-
ware ever since it became a significant item in organizational budgets. And like all
questions concerning value, the first step is the precise determination of the object
being assessed and the second step is the identification of the entity to which the
value is beneficial. In software engineering both of these can be difficult. The pre-
cise determination of the object can be complex. If it is an entire information sys-
tem in an organizational context that is the object of interest, then boundary defini-
tion becomes an issue. Is the hardware and middleware to be included? Can the
application exist without any other applications? If however the object of interest
is, say, a software engineering activity such as testing within a particular project,
then the boundary definition becomes a little easier. But the measure of benefit
may become a little harder.

In this book the issues related to the value of different software engineering ac-
tivities are addressed along with the benefits and opportunities in decision making
under conditions of conflict of decision criteria in uncertain contexts.

Because software has many stakeholders including developers, users, and man-
agers, it is essential that a comparative measure of the software be devised to sup-
port software decisions. This is the aim of value-based software engineering. If we
can develop models and measures of value which are of use to the manager, the
developer, and the user, then trade-off decisions can become possible, for example
between quality and cost or between functionality and schedule. Without the com-
parative measures, the comparisons are impossible and the decisions regarding
development alternatives can only address one criterion, such as defects or func-
tionality, at any point in time, since we need to measure defects or functionality
using the same yardstick. Value can be that yardstick.

If we were to divide the software engineering domain simplistically into the
production of shrink-wrapped and other products, we could start to divide the
problem. In the case of shrink-wrapped, the definition of the object of interest be-
comes quite clear. It is a product that is sold. The valuation of interventions in the
software engineering activities in this domain appears easier than in many other
domains. In this case the quality model work that has been carried out in software
engineering can provide some insights into the relative value of product character-
istics. It would then be possible to investigate the software engineering interven-
tions that give rise to changes in the quality characteristics that are valued by the
consumer of the software product. In this manner the link between software engi-

VI Ross Jeffery

neering process interventions and product characteristics allows for a value-based
measure for those interventions.

Another way of looking at value in this context might be the work that has been
carried out on product performance. It has been shown in many countries, for ex-
ample, that outstanding product success derives from product advantage (defined
as superior price/performance, customer benefits, and relative product quality),
pre-development assessments, cross-functional teams, focus on markets where in-
fluence exists, and other factors. Perhaps value-based software engineering needs
to understand some of these factors and then link them to substantive software
quality models if value-based decisions are to be made in the software engineering
context.

But how might we assess interventions in software engineering? Since software
engineering is a human-intensive activity that results in a logical product that is
often used as a part of a business process, the determination of value can draw
from many disciplines. Perhaps one issue of interest is the assessment of the value
of training of software engineers. In this case the value of human resource inter-
vention programs may be a part of the area of interest. Can we make use of work,
as given by the Brogden utility equation, for measuring the change in utility in
dollars after a training program when looking at the value of project training inter-
ventions in software engineering?

Another factor that seems clearly of concern in this area is the methods we use
to value information when we are making decisions under conditions of uncer-
tainty. Methods such as the use of the expected value of perfect information
(EVPI) can set the upper value bound in these conditions. The minimum can also
be determined using these techniques. In this way it might be possible to consider
the payoff maximization for software engineering interventions as well as the
minimization of regret or loss.

Clearly these are complex, multidisciplinary opportunities for the research
community, with significant potential economic impact across economies. In this
book the editors have collected the current state of the art in the application of
value-based approaches to software engineering activities and decisions. The book
sets a framework for value, the theoretical foundations, the practices, and the ap-
plication. The authors are drawn largely from the software engineering research
community that is involved in the areas of software engineering decision making,
measurement, and investment. This book presents an exciting collection of chap-
ters in an area of research that will develop over the ensuing years as the impor-
tance of this work gains recognition in the wider community.

Author Biography

Ross Jeffery is Professor of Software Engineering in the School of Computer Sci-
ence and Engineering at UNSW and Program Leader in Empirical Software Engi-
neering in National ICT Australia Ltd. (NICTA). Previously he was Director of
the Centre for Advanced Software Engineering Research (CAESER) at the Uni-

Foreword VII

versity of New South Wales. Professor Jeffery was the founding Head of the
School of Information Systems at UNSW from 1989 to 1995 and Associate Dean
(Technology) for the Faculty of Commerce and Economics from 1996 to 1999. He
was the founding Chairman the Australian Software Metrics Association (ASMA)
where he served as Chairman from its inception for a number of years. He is
Chairman of the IEAust/ACS Joint Board on Software Engineering. He has served
on the editorial board of the IEEE Transactions on Software Engineering, and the
Wiley International Series in Information Systems and he is Associate Editor of
the Journal of Empirical Software Engineering. He has also been on the steering
committee of the IEEE and ACM International Conference on Software Engineer-
ing and served as Program Co-Chair for the 1995 conference in Seattle. He is a
founding member of the International Software Engineering Research Network
(ISERN). He was elected Fellow of the Australian Computer Society for his con-
tribution to software engineering research. His current research interests are in
software engineering process and product modeling and improvement, electronic
process guides and software knowledge management, software quality, software
metrics, software technical and management reviews, and software resource mod-
eling and estimation. His research has involved over fifty government and industry
organizations over a period of 15 years and has been funded by industry, govern-
ment, and universities. He has co-authored four books and over one hundred and
twenty research papers.

Preface

Stefan Biffl, Aybüke Aurum, Barry Boehm, Hakan Erdogmus, Paul Grünbacher

This book tackles software engineering decisions and their consequences from a
value-based perspective. The chapters of the book exploit this perspective to foster
• better evaluation of software products, services, processes, and projects from an

economic point of view;
• better identification of risks for software development projects and effective

decision support for them in a multicriteria and uncertain environment;
• better project management through a better understanding of the contribution of

the activities and practices involved, the techniques, artifacts, and methods
used, as well as the functionality, products, and systems delivered.

What Do We Mean by “Value”?

The goal of software engineering is to create products, services, and processes that
add value. People who contribute to the creation of these artifacts – analysts, proc-
ess engineers, software engineers, testers, managers, executives – strive in their
decisions and actions to maximize some simple or complex notion of value,
whether consciously or unconsciously, and whether with respect to shared goals or
to satisfy personal objectives. Alas, when value considerations remain implicit, the
overall effect may very well be negative. Examples of undesirable consequences
of implicit and clashing value perspectives abound. A good case in point is when
developers value superior design, the marketing of new, nifty functionality, qual-
ity assurance “zero defects” and the management of short time-to-market. Another
example is when product quality is pursued for quality’s sake with little regard to
shareholder value (Favaro, 1996). Yet another is when management tries to drive
development costs down by treating developers as a replaceable commodity or by
evaluating them using one-dimensional performance metrics, and the development
team reacts by creating knowledge silos or by “coding to rule” to protect its own
interests. If value perspectives are not explicated and reconciled, everybody loses
in the end.

Value-based software engineering (VBSE) brings such value considerations to
the foreground so that software engineering decisions at all levels can be opti-
mized to meet or reconcile explicit objectives of the involved stakeholders, from
marketing staff and business analysts to developers, architects, and quality ex-
perts, and from process and measurement experts to project managers and execu-
tives. In VBSE, decisions are not made in a setting blind to value perspectives,
whether common or differing, of these project participants.

Driven by both individual and collective goals, these stakeholders all hope to
derive some benefit, whether tangible or intangible, economic or social, monetary
or utilitarian, or even aesthetic or ethical. By the term value, we refer to this ulti-

X S. Biffl, A. Aurum, B. Boehm, H. Erdogmus, P. Grünbacher

mate benefit, which is often in the eye of the beholder and admits multiple charac-
terizations.

A Dictionary of Canadian Economics defines value as: “The quantity of one
product or service that will be given or accepted in exchange for another. It is
therefore a measure of the economic significance of a particular good or service.
This value in exchange depends on the scarcity of the good or service and the ex-
tent to which it is desired.”

While this certainly is a common definition of value and is addressed promi-
nently in the book, it represents only one dimension. A Modern Dictionary of So-
ciology defines value more abstractly as a “…generalized principle of behavior to
which the members of a group feel a strong commitment and which provides a
standard for judging specific acts and goals.”

In the same spirit, the Oxford Companion to Law (1980) points out that
“…value may consist of spiritual or aesthetic qualities, or in utility in use, or in
the amount of money or other goods which could be obtained in exchange for the
thing in question…” although the latter, monetary sense, by virtue of being the
most tangible, is the most relevant in legal contexts.

In this book, you will find many contributions that stress the more general,
group-oriented, and utilitarian aspect of value alongside those that focus on the
more traditional, economic and monetary aspect. Neither aspect takes precedence
over the other; both aspects are relevant to tackling the wide spectrum of software
engineering issues covered in this book.

A Historical Perspective

To our knowledge, the first significant text to address value considerations beyond
cost models in the software development context was Boehm’s Software Engi-
neering Economics (Boehm, 1981). Boehm later focused on the relationship be-
tween value and software process. The result was the spiral model of software de-
velopment, which brought to the foreground risk management as an integral
component in software process (Boehm, 1986).

The value-based management movement of the early 1990s (McTaggart, 1994)
inspired an IEEE Software essay entitled “When the Pursuit of Quality Destroys
Value” (Favaro, 1996). This essay made the controversial argument that superior
quality should not be a goal in itself in the absence of favorable economics.
Favaro et al. used the adjective “value-based” in the software development context
in a later article addressing the economics of software reuse (Favaro et al., 1998).
The same year the Economics-Driven Software Engineering Research (EDSER)
workshops debuted at the International Conference on Software Engineering
(ICSE) as a forum to share experiences and promote VBSE-related issues among
the research community. The EDSER workshops have since been collocated with
this annual conference with increasing popularity, and continue to be an important
source of information. Two years after EDSER’s debut, Boehm and Sullivan pro-
posed the first agenda for VBSE research at ICSE 2000.

Preface XI

Over time, the scope of VBSE research expanded to include aspects of value
other than economic and monetary. Of particular historical interest is the WinWin
model of requirements negotiation, introduced by Boehm and others in the mid-
1990s“ (Boehm et al., 1998). The WinWin model stressed the multi-stakeholder
perspective by incorporating into the spiral model an approach for reconciling dif-
fering value propositions of project stakeholders. During the late 1990s and early
2000s, the advent of empirical and evidence-based software engineering, value-
based management approaches, preference-based decision making, as well agile
software development and other risk-driven methods continued to push the VBSE
agenda forward and enlarge its scope. In 2003, Boehm proposed a formal VBSE
agenda that captures the expanding scope of this burgeoning field (Boehm, 2003).
The book both revisits and builds on this agenda.

Why Should You Care About Value-Based Software Engineering?

It is impossible to effectively address value considerations when software devel-
opment is treated as an ad hoc endeavor. Much like in conventional engineering,
the incorporation of value considerations requires treating software development
as a purposeful endeavor, which aims at the cost-effective and reliable construc-
tion and maintenance of products that meet specific, if not always static, goals.
Hence the title of the book: Value-Based Software Engineering.

Software admittedly has unique internal and external characteristics, in particu-
lar its highly flexible and volatile nature and its heavy dependence on collabora-
tion among creative and skilled people, that in many instances necessitate a con-
struction and management approach radically different from that of building a
bridge or a ship, and more akin to new product development. However, basic en-
gineering principles of discipline, economy, rigor, quality, and utility, and, to a
certain extent, repeatability and predictability, still very much apply. As in con-
ventional engineering, value considerations affect the trade-offs among these prin-
ciples, but probably with much more subtlety, severity, and variety than they do in
the engineering of hard products.

But why are these trade-offs so important? For no other reason than that they
ultimately determine the outcome of a software project. The message of those who
studied the characteristics of successful software organizations and projects is
pretty strong. Both prominent business school researchers, such as Alan McCor-
mack of the Harvard University and Michael Cusumano of the Massachusetts In-
stitute of Technology, and software engineering thought leaders, such as Tom
DeMarco, Larry Constantine, and Tim Lister, have repeatedly pointed out to the
importance of value factors and the underlying trade-offs in their writings. Since
the mid-1980s, the frequently cited CHAOS reports from the Standish Group have
consistently identified closely related issues, such as the misalignment of IT
spending with organizational objectives and user needs, as sources of failure in
software projects. Our main purpose in the production of this book was to draw at-
tention to these issues, which are impossible to reason about in a value-neutral and
ad hoc setting.

XII S. Biffl, A. Aurum, B. Boehm, H. Erdogmus, P. Grünbacher

The Scope of the Book

The International Organization for Standardization (ISO) defines software engi-
neering as “the systematic application of scientific and technological knowledge,
methods, and experience to the design, implementation, testing, and documenta-
tion of software to optimize its production, support, and quality” (Information
Technology: Vocabulary, Part 1, Fundamental Terms). While the ISO definition
might suffice in a value-neutral setting, we must extend the scope considerably to
address value considerations effectively. Three shortcomings of this definition are
remarkable from a value-oriented perspective.

First is its exclusion of economics, management science, cognitive sciences,
and humanities from the body of knowledge required to create successful software
systems. Value-based software engineering however cannot ignore this body of
knowledge because it considers software development as a purposeful activity car-
ried out by people for people.

The second shortcoming of the ISO definition is its delimitation of software
development by technical activities such as design, implementation, and testing.
VBSE in contrast must also consider, as part of the software engineering lifecycle,
management-oriented activities – such as business case development, project
evaluation, project planning, process selection, project management, risk man-
agement, process measurement, and monitoring – that have often been considered
peripheral. VBSE as such is a multifaceted, multidisciplinary approach that covers
all practices, activities, and phases involved in software development, addressing a
wide variety of decisions about technical issues, business models, software devel-
opment processes, software products and services, and related management prac-
tices.

The third shortcoming of the ISO definition is its failure to explicitly recognize
the ultimate goal: ensuring that software systems continue to meet and adapt to
evolving human and organizational needs to create value. VBSE must put these
needs foremost. According to VBSE, it is not enough, or at times not even critical,
for software projects to merely meet unilaterally preset schedule, budget, process,
and quality objectives. Rather, it is necessary that the resulting products and ser-
vices persist to increase the wealth of the stakeholders and optimize other relevant
value objectives of these projects.

Who Should Read This Book?

This book is intended for those who care about the impact of value considerations
in software development activities and decisions. And who should care about such
considerations? Well, just about everyone: academics, managers, practitioners,
and students of software engineering who recognize that software is not created in
a void, that software development involves many participants – executives, project
managers, business analysts, developers, quality assurance experts, users, the gen-
eral public, and so on – with varying roles and stakes in both the final products
and the processes used the create those products.

Preface XIII

The book appeals particularly to readers who are interested in high-level as-
pects of software engineering decision making because of its focus on organiza-
tional, project-, process-, and product-level issues rather than on low-level, purely
technical decisions. The target audience includes, but is not limited to:
• product managers, project managers, chief information officers who make high-

level decisions;
• process experts, measurement experts, requirements engineers, business ana-

lysts, quality assurance experts, usability experts, and technical leads who par-
ticipate in various lifecycle activities at key interface points and whose influ-
ence span multiple levels and phases;

• software engineering researchers, educators, and graduate students who teach
or study software process, evaluate existing and new practices, technologies,
methods, or products, or teach or investigate managerial, social, and economic
aspects of software development.

To benefit from this book, the reader should have at least taken advanced courses
or studied advanced texts on software engineering or software process, or worked
in the software industry long enough to acquire an appreciation of the many trade-
offs involved from beyond a purely technical perspective.

How Is the Book Organized?

We organized the book in three parts. Part 1 focuses on the foundations of VBSE
and provides examples of frameworks for reasoning about value considerations in
software development activities. Part 2 provides methods and techniques for
VBSE that build upon the foundations and frameworks presented in Part 1. Fi-
nally, Part 3 demonstrates the benefits of VBSE through concrete examples and
case studies.

While we believe that all chapters contain ideas applicable in a variety of situa-
tions, because the book addresses a wide spectrum of issues and activities, certain
chapters will inevitably be more relevant to some readers than others, depending
on the reader’s orientation. We recommend that all readers familiarize themselves
with Chapter 1 regardless of their interests, as this chapter sets the tone for the rest
of the book. There are many ways to dissect the content according to particular in-
terest areas. We hope that the following road map will help orient the reader who
wishes to quickly zoom in on a specific topic.

If you are interested in project-level decisions, economic valuation of software
projects and assets, and reasoning under uncertainty, make sure to read Chapters
3, 5, and 17. Readers interested in VBSE-related concepts and theories applicable
to a range of software engineering lifecycle activities should start with Chapters 2,
4, 6, and 8. Chapters 7, 9, and 12 are recommended reading for those with an in-
terest in product planning, and Chapters 6, 7, and 9 for those focusing on require-
ments gathering and negotiation. If the focus is on software process issues and tool
adoption, Chapters 6, 8, 13, 15, and 16 discuss approaches that aid in process im-
provement and measurement as well as impact evaluation. Chapters 4, 10, 11,

XIV S. Biffl, A. Aurum, B. Boehm, H. Erdogmus, P. Grünbacher

and 14 will appeal to the reader interested in product evaluation and testing-related
issues. Chapters 8, 14, and 15 will appeal to those who tackle knowledge man-
agement problems. Finally, Chapters 3, 5, 6, and 13 are relevant to readers who
are interested in risk management.

Whatever your orientation and interests, we hope that the book will inspire you
to incorporate value considerations to your own work, or, if you have already been
operating in a value-conscious setting, that you will find new insights and re-
sources to draw upon. Good reading!

Acknowledgements

This book would not have been possible without the efforts of many. We are
thankful to the authors who contributed the individual chapters and worked dili-
gently with the editors and external reviewers to enhance the quality of the book.
At least three reviewers evaluated each chapter and provided extensive feedback
to improve the clarity of presentation and ensure technical coherence. Their efforts
are much appreciated. We also thank Matthias Heindl, Stefan Kresnicka, Martina
Lettner, Muhammad Asim Noor, Barbara Schuhmacher, Norbert Seyff, Rick
Rabiser, and Markus Zeilinger for their help during this project. Finally, we thank
Springer, our publisher, for trusting our vision, and in particular Ralf Gerstner for
his support.

References

(Boehm, 1981) Boehm, B. W.: Software Engineering Economics (Prentice-Hall,
1981)

(Boehm, 1986) Boehm, B. W.: A Spiral Model of Software Development and En-
hancement. Software Engineering Notes, 11(4)

(Boehm et al., 1998) Boehm, B. W., Egyed, A., Kwan, J., Port, D., Shaw, A.,
Madachy, R.: Using the WinWin Spiral Model: A Case Study. IEEE Com-
puter, (July 1998)

(Boehm, 2003) Boehm, B. W.: Value-Based Software Engineering. Software En-
gineering Notes, 28(2):2003

(Favaro, 1996) Favaro, J.: When the Pursuit of Quality Destroys Value. IEEE
Software (May 1996)

(Favaro et al., 1998) Favaro, J., Favaro, K. R., Favaro, P. F.: Value-based Reuse
Investment, Annals of Software Engineering, 5 (1998)

(McTaggart, 1994) McTaggart, J.: The Value Imperative (The Free Press, 1994)

Table of Contents

Foreword ..V

Preface .. IX

Table of Contents..XV

List of Contributors.. XIX

Part 1 Foundations and Frameworks ... 1

1 Value-Based Software Engineering: Overview and Agenda 3

1.1 Overview and Rationale ..3
1.2 Background and Agenda ...7
1.3 A Global Road Map for Realizing VBSE Benefits10
1.4 Summary and Conclusions ..11

2 An Initial Theory of Value-Based Software Engineering 15

2.1 Introduction ...15
2.2 A “4+1” Theory of Value-Based Software Engineering18
2.3 Using and Testing the VBSE Theory: Process Framework and Example ...23
2.4 VBSE Theory Evaluation ..31
2.5 Conclusions and Areas for Further Research ..33

3 Valuation of Software Initiatives Under Uncertainty: Concepts,
Issues, and Techniques.. 39

3.1 Introduction ...39
3.2 Issues in Valuation ..40
3.3 Valuation of Uncertain Projects with Decision Trees..................................45
3.4 Real Options Theory..52
3.5 Summary and Discussion ..60

4 Preference-Based Decision Support in Software Engineering...................... 67

4.1 Introduction ...67
4.2 Decisions with Multiple Criteria and Software Engineering69
4.3 Multicriteria Decision Methods...71
4.4 Incomplete Information and Sensitivity Analysis..82
4.5 Summary and Conclusions ..84

5 Risk and the Economic Value of the Software Producer 91

5.1. Introduction ..91
5.2. The Value of the Firm ..92

XVI

5.3. The Time Value of Money ...92
5.4. Financial Risk...94
5.5. Prediction and the Value of the Firm..95
5.6. Multi-Project Firms and Economic Value..96
5.7. The Economic Cost of Extended Time-to-Market96
5.8. Financial Risk and Software Projects ...97
5.9 Predictability and Process Improvement ...99
5.10 Arriving at a Risk Premium for Software Projects100
5.11 Computing the Financial Value of Improved Predictability....................101
5.12 An Illustrative Example...102
5.13 Conclusions ...103

Part 2 Practices...107

6 Value-Based Software Engineering: Seven Key Elements and Ethical
Considerations ..109

6.1 Benefits Realization Analysis..109
6.2 Stakeholder Value Proposition Elicitation and Reconciliation..................111
6.3 Business Case Analysis ...113
6.4 Continuous Risk and Opportunity Management114
6.5 Concurrent System and Software Engineering..117
6.6 Value-Based Monitoring and Control ...119
6.7 Change as Opportunity ..122
6.8 Integrating Ethical Considerations into Software Engineering Practice....124
6.9 Getting Started Toward VBSE ..128

7 Stakeholder Value Proposition Elicitation and Reconciliation133

7.1 Introduction ...133
7.2 Negotiation Challenges ...134
7.3 The EasyWinWin Requirements Negotiation Support..............................138
7.4 Possible Extensions to the EasyWinWin Approach147
7.5 Conclusions ...151

8 Measurement and Decision Making ..155

8.1 Introduction ...155
8.2 Models of Measurement and Decision Making...156
8.3 Decision Making Behavior..162
8.4 Decision Making Behavior in Groups ...166
8.5 Measurement and Analysis for Decision Making......................................167
8.6 Decision Support in a VBSE Framework..170
8.7 Conclusion...173

9 Criteria for Selecting Software Requirements to Create Product
Value: An Industrial Empirical Study ...179

9.1 Introduction ...179
9.2 Background ...181

Table of Contents XVII

9.3 Research Approach..185
9.4 Survey Results and Analysis ...189
9.5 Conclusions and Further Work..196

10 Collaborative Usability Testing to Facilitate Stakeholder
Involvement.. 201

10.1 Introduction ...201
10.2 Usability Testing ...203
10.3 Collaboration Tools and Techniques for Usability Testing205
10.4 Research Approach..208
10.5. The e-CUP process ...210
10.6 Application of e-CUP ..213
10.7 Conclusion...217

11 Value-Based Management of Software Testing ... 225

11.1 Introduction ...225
11.2 Taking a Value-Based Perspective on Testing ..226
11.3 Practices Supporting Value-Based Testing..233
11.4 A Framework for Value-Based Test Management236
11.5 Conclusion and Outlook ..241

Part 3 Applications.. 245

12 Decision Support for Value-Based Software Release Planning 247

12.1 Introduction ...247
12.2 Background..248
12.3 Value-Based Release Planning ..251
12.4 Example...255
12.5 Conclusions and Future Work ...258

13 ProSim/RA – Software Process Simulation in Support of Risk
Assessment ... 263

13.1 Introduction ...263
13.2 Software Process Simulation ...266
13.3 SPS-Based Risk Analysis Procedure ...269
13.4 Case Example ..271
13.5 Discussion and Future Work ...278

14 Tailoring Software Traceability to Value-Based Needs 287

14.1 Introduction ...287
14.2 Video-on-Demand Case Study ..290
14.3 Testing-Based Trace Analysis ...293
14.4 Trace Analysis through Commonality...299
14.5 The Tailorable Factors...302
14.6 Conclusions ...306

XVIII

15 Value-Based Knowledge Management: the Contribution of Group
Processes..309

15.1 Introduction ...309
15.2 Managing Knowledge ...310
15.3 Example: Postmortem Review and Process Workshop...........................313
15.4 Discussion ...318
15.5 Conclusion and Further Work ...322

16 Quantifying the Value of New Technologies for Software
Development ...327

16.1 Introduction ...327
16.2 Background ...329
16.3 Applications ..330
16.4 Impact Assessment Methodology..335
16.5 Results ...338
16.6 Related Work...341
16.7 Discussion ...341

17 Valuing Software Intellectual Property...345

17.1 Introduction ...345
17.2 Software Intellectual Property Protection Mechanisms...........................346
17.3 Licensing ...349
17.4 Valuation Process ..350
17.5 Valuation Framework for Intellectual Property.......................................356
17.6 Potential Uses of the Valuation Framework..363
17.7 Future Shock ...363
17.8 Summary and Conclusions ..364

Glossary...367

List of Figures ...381

List of Tables ..383

Index..385

List of Contributors

David L. Atkins
Department of Computer Science
American University in Cairo
Cairo 11511, Egypt
Email: datkins@aucegypt.edu

Aybüke Aurum
School of Information Systems, Technology and Management
University of New South Wales
Sydney NSW 2052, Australia
Email: aybuke@unsw.edu.au

Michael Berry
University of New South Wales
School of Computer Science and Engineering
Sydney NSW 2052, Australia
Email: Michael.Berry@student.unsw.edu.au

Stefan Biffl
Institute of Software Technology and Interactive Systems
Technische Universität Wien
Karlsplatz 13, A-1040, Vienna, Austria
Email: Stefan.Biffl@tuwien.ac.at

Barry W. Boehm
University of Southern California
Center for Software Engineering
941 W. 37th Place, SAL Room 328
Los Angeles, CA 90089-0781, USA
Email: boehm@cse.usc.edu

Torgeir Dingsøyr
SINTEF Information and communication technology
Department of Software Engineering
NO-7465 Trondheim, Norway
Email: Torgeir.dingsoyr@sintef.no

Alexander Egyed
Teknowledge Corporation
4640 Admiralty Way, Suite 1010
Marina Del Rey, CA 90292, USA
Email: aegyed@ieee.org

XX

Hakan Erdogmus
Institute for Information Technology,
National Research Council Canada
M50, 1200 Montreal Rd., Ottawa, ON, Canada K1A 0R6
Email: Hakan.Erdogmus@nrc-cnrc.gc.ca

John Favaro
Consulenza Informatica
Via Gamerra 21
56123 Pisa, Italy
Email: john@favaro.net

Ann Fruhling
Department of Computer Science
College of Information Science & Technology
University of Nebraska at Omaha, USA
Email: afruhling@mail.unomaha.edu

Paul Grünbacher
Systems Engineering and Automation
Johannes Kepler University Linz
Altenbergerstr. 69, 4040 Linz, Austria
Email: paul.gruenbacher@jku.at

Michael Halling
Department of Finance
University of Vienna
Brünnerstr. 72, 1210 Vienna, Austria
Email: michael.halling@univie.ac.at

Warren Harrison
Portland State University
1825 SW Broadway
97207 Portland, OR, USA
Email: warren@cs.pdx.edu

Apurva Jain
University of Southern California
Center for Software Engineering
941 W. 37th Place, SAL Room 328
Los Angeles, CA 90089-0781, USA
Email: apurvaja@usc.edu

List of Contributors XXI

Sabine Köszegi
Department of Finance
University of Vienna
Brünnerstr. 72, 1210 Vienna, Austria
Email: Sabine.Koeszegi@univie.ac.at

Sebastian Maurice
Software Engineering Decision Support Lab
2500 University Drive NW
Calgary, Alberta, Canada T2N 1N4
Email: smaurice@ucalgary.ca

Audris Mockus
Avaya Corporation
Email: audris@avaya.com

An Ngo-The
Software Engineering Decision Support Lab
2500 University Drive NW
Calgary, Alberta, Canada T2N 1N4
Email: ango@cpsc.ucalgary.ca

Dietmar Pfahl
University of Calgary
Schulich School of Engineering
2500 University Drive NW
Calgary, Alberta Canada T2N 1N4
ICT Building
Email: dpfahl@ucalgary.ca

Rudolf Ramler
Software Competence Center Hagenberg GmbH
Hauptstrasse 99
4232 Hagenberg, Austria
Email: rudolf.ramler@scch.at

Donald J. Reifer
Reifer Consultants, Inc.
P.O. Box 4046
Torrance, CA 90510-4046
Email: d.reifer@ieee.org

XXII

Günther Ruhe
iCORE Professor and Industrial Research Chair Software Engineering
2500 University Drive NW
Calgary, Alberta, Canada T2N 1N4
Email: ruhe@ucalgary.ca

Omolade Saliu
Software Engineering Decision Support Lab
2500 University Drive NW
Calgary, Alberta, Canada T2N 1N4
Email: saliu@cpsc.ucalgary.ca

Harvey Siy
Lucent Technologies
Email: hpsiy@lucent.com

Rudolf Vetschera
Department of Business Studies
University of Vienna
Brünnerstr. 72, 1210 Vienna, Austria
Email: rudolf.vetschera@univie.ac.at

Gert-Jan de Vreede
Department of Information Systems & Quantitative Analysis
College of Information Science & Technology
University of Nebraska at Omaha, USA
Email: gdevreede@mail.unomaha.edu

Claes Wohlin
Department of Systems and Software Engineering
Blekinge Institute of Technology Box 520
SE-372 25 Ronneby, Sweden
Email:Claes.Wohlin@bth.se

