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Foreword

Ross Jeffery 

When, as a result of pressure from the CEO, the Chief Information Officer poses 
the question “Just what is this information system worth to the organization?” the 
IT staff members are typically at a loss. “That’s a difficult question,” they might 
say; or “well it really depends” is another answer. Clearly, neither of these is very 
satisfactory and yet both are correct. The IT community has struggled with ques-
tions concerning the value of an organization’s investment in software and hard-
ware ever since it became a significant item in organizational budgets. And like all 
questions concerning value, the first step is the precise determination of the object 
being assessed and the second step is the identification of the entity to which the 
value is beneficial. In software engineering both of these can be difficult. The pre-
cise determination of the object can be complex. If it is an entire information sys-
tem in an organizational context that is the object of interest, then boundary defini-
tion becomes an issue. Is the hardware and middleware to be included? Can the 
application exist without any other applications? If however the object of interest 
is, say, a software engineering activity such as testing within a particular project, 
then the boundary definition becomes a little easier. But the measure of benefit 
may become a little harder. 

In this book the issues related to the value of different software engineering ac-
tivities are addressed along with the benefits and opportunities in decision making 
under conditions of conflict of decision criteria in uncertain contexts. 

Because software has many stakeholders including developers, users, and man-
agers, it is essential that a comparative measure of the software be devised to sup-
port software decisions. This is the aim of value-based software engineering. If we 
can develop models and measures of value which are of use to the manager, the 
developer, and the user, then trade-off decisions can become possible, for example 
between quality and cost or between functionality and schedule. Without the com-
parative measures, the comparisons are impossible and the decisions regarding 
development alternatives can only address one criterion, such as defects or func-
tionality, at any point in time, since we need to measure defects or functionality 
using the same yardstick. Value can be that yardstick. 

If we were to divide the software engineering domain simplistically into the 
production of shrink-wrapped and other products, we could start to divide the 
problem. In the case of shrink-wrapped, the definition of the object of interest be-
comes quite clear. It is a product that is sold. The valuation of interventions in the 
software engineering activities in this domain appears easier than in many other 
domains. In this case the quality model work that has been carried out in software 
engineering can provide some insights into the relative value of product character-
istics. It would then be possible to investigate the software engineering interven-
tions that give rise to changes in the quality characteristics that are valued by the 
consumer of the software product. In this manner the link between software engi-



VI Ross Jeffery 

neering process interventions and product characteristics allows for a value-based 
measure for those interventions. 

Another way of looking at value in this context might be the work that has been 
carried out on product performance. It has been shown in many countries, for ex-
ample, that outstanding product success derives from product advantage (defined 
as superior price/performance, customer benefits, and relative product quality), 
pre-development assessments, cross-functional teams, focus on markets where in-
fluence exists, and other factors. Perhaps value-based software engineering needs 
to understand some of these factors and then link them to substantive software 
quality models if value-based decisions are to be made in the software engineering 
context. 

But how might we assess interventions in software engineering? Since software 
engineering is a human-intensive activity that results in a logical product that is 
often used as a part of a business process, the determination of value can draw 
from many disciplines. Perhaps one issue of interest is the assessment of the value 
of training of software engineers. In this case the value of human resource inter-
vention programs may be a part of the area of interest. Can we make use of work, 
as given by the Brogden utility equation, for measuring the change in utility in 
dollars after a training program when looking at the value of project training inter-
ventions in software engineering? 

Another factor that seems clearly of concern in this area is the methods we use 
to value information when we are making decisions under conditions of uncer-
tainty. Methods such as the use of the expected value of perfect information 
(EVPI) can set the upper value bound in these conditions. The minimum can also 
be determined using these techniques. In this way it might be possible to consider 
the payoff maximization for software engineering interventions as well as the 
minimization of regret or loss. 

Clearly these are complex, multidisciplinary opportunities for the research 
community, with significant potential economic impact across economies. In this 
book the editors have collected the current state of the art in the application of 
value-based approaches to software engineering activities and decisions. The book 
sets a framework for value, the theoretical foundations, the practices, and the ap-
plication. The authors are drawn largely from the software engineering research 
community that is involved in the areas of software engineering decision making, 
measurement, and investment. This book presents an exciting collection of chap-
ters in an area of research that will develop over the ensuing years as the impor-
tance of this work gains recognition in the wider community. 
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Ross Jeffery is Professor of Software Engineering in the School of Computer Sci-
ence and Engineering at UNSW and Program Leader in Empirical Software Engi-
neering in National ICT Australia Ltd. (NICTA). Previously he was Director of 
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Preface

Stefan Biffl, Aybüke Aurum, Barry Boehm, Hakan Erdogmus, Paul Grünbacher 

This book tackles software engineering decisions and their consequences from a 
value-based perspective. The chapters of the book exploit this perspective to foster  
• better evaluation of software products, services, processes, and projects from an 

economic point of view;  
• better identification of risks for software development projects and effective 

decision support for them in a multicriteria and uncertain environment;  
• better project management through a better understanding of the contribution of 

the activities and practices involved, the techniques, artifacts, and methods 
used, as well as the functionality, products, and systems delivered. 

What Do We Mean by “Value”? 

The goal of software engineering is to create products, services, and processes that 
add value. People who contribute to the creation of these artifacts – analysts, proc-
ess engineers, software engineers, testers, managers, executives – strive in their 
decisions and actions to maximize some simple or complex notion of value, 
whether consciously or unconsciously, and whether with respect to shared goals or 
to satisfy personal objectives. Alas, when value considerations remain implicit, the 
overall effect may very well be negative. Examples of undesirable consequences 
of implicit and clashing value perspectives abound. A good case in point is when 
developers value superior design, the marketing of new, nifty functionality, qual-
ity assurance “zero defects” and the management of short time-to-market. Another 
example is when product quality is pursued for quality’s sake with little regard to 
shareholder value (Favaro, 1996). Yet another is when management tries to drive 
development costs down by treating developers as a replaceable commodity or by 
evaluating them using one-dimensional performance metrics, and the development 
team reacts by creating knowledge silos or by “coding to rule” to protect its own 
interests. If value perspectives are not explicated and reconciled, everybody loses 
in the end. 

Value-based software engineering (VBSE) brings such value considerations to 
the foreground so that software engineering decisions at all levels can be opti-
mized to meet or reconcile explicit objectives of the involved stakeholders, from 
marketing staff and business analysts to developers, architects, and quality ex-
perts, and from process and measurement experts to project managers and execu-
tives. In VBSE, decisions are not made in a setting blind to value perspectives, 
whether common or differing, of these project participants. 

Driven by both individual and collective goals, these stakeholders all hope to 
derive some benefit, whether tangible or intangible, economic or social, monetary 
or utilitarian, or even aesthetic or ethical. By the term value, we refer to this ulti-
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mate benefit, which is often in the eye of the beholder and admits multiple charac-
terizations.  

A Dictionary of Canadian Economics defines value as: “The quantity of one 
product or service that will be given or accepted in exchange for another. It is 
therefore a measure of the economic significance of a particular good or service. 
This value in exchange depends on the scarcity of the good or service and the ex-
tent to which it is desired.” 

While this certainly is a common definition of value and is addressed promi-
nently in the book, it represents only one dimension. A Modern Dictionary of So-
ciology defines value more abstractly as a “…generalized principle of behavior to 
which the members of a group feel a strong commitment and which provides a 
standard for judging specific acts and goals.” 

In the same spirit, the Oxford Companion to Law (1980) points out that 
“…value may consist of spiritual or aesthetic qualities, or in utility in use, or in 
the amount of money or other goods which could be obtained in exchange for the 
thing in question…” although the latter, monetary sense, by virtue of being the 
most tangible, is the most relevant in legal contexts.  

In this book, you will find many contributions that stress the more general, 
group-oriented, and utilitarian aspect of value alongside those that focus on the 
more traditional, economic and monetary aspect. Neither aspect takes precedence 
over the other; both aspects are relevant to tackling the wide spectrum of software 
engineering issues covered in this book. 

A Historical Perspective 

To our knowledge, the first significant text to address value considerations beyond 
cost models in the software development context was Boehm’s Software Engi-
neering Economics (Boehm, 1981). Boehm later focused on the relationship be-
tween value and software process. The result was the spiral model of software de-
velopment, which brought to the foreground risk management as an integral 
component in software process (Boehm, 1986).  

The value-based management movement of the early 1990s (McTaggart, 1994) 
inspired an IEEE Software essay entitled “When the Pursuit of Quality Destroys 
Value” (Favaro, 1996). This essay made the controversial argument that superior 
quality should not be a goal in itself in the absence of favorable economics. 
Favaro et al. used the adjective “value-based” in the software development context 
in a later article addressing the economics of software reuse (Favaro et al., 1998). 
The same year the Economics-Driven Software Engineering Research (EDSER) 
workshops debuted at the International Conference on Software Engineering 
(ICSE) as a forum to share experiences and promote VBSE-related issues among 
the research community. The EDSER workshops have since been collocated with 
this annual conference with increasing popularity, and continue to be an important 
source of information. Two years after EDSER’s debut, Boehm and Sullivan pro-
posed the first agenda for VBSE research at ICSE 2000.  
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Over time, the scope of VBSE research expanded to include aspects of value 
other than economic and monetary. Of particular historical interest is the WinWin 
model of requirements negotiation, introduced by Boehm and others in the mid-
1990s“ (Boehm et al., 1998). The WinWin model stressed the multi-stakeholder 
perspective by incorporating into the spiral model an approach for reconciling dif-
fering value propositions of project stakeholders. During the late 1990s and early 
2000s, the advent of empirical and evidence-based software engineering, value-
based management approaches, preference-based decision making, as well agile 
software development and other risk-driven methods continued to push the VBSE 
agenda forward and enlarge its scope. In 2003, Boehm proposed a formal VBSE 
agenda that captures the expanding scope of this burgeoning field (Boehm, 2003). 
The book both revisits and builds on this agenda. 

Why Should You Care About Value-Based Software Engineering? 

It is impossible to effectively address value considerations when software devel-
opment is treated as an ad hoc endeavor. Much like in conventional engineering, 
the incorporation of value considerations requires treating software development 
as a purposeful endeavor, which aims at the cost-effective and reliable construc-
tion and maintenance of products that meet specific, if not always static, goals. 
Hence the title of the book: Value-Based Software Engineering.

Software admittedly has unique internal and external characteristics, in particu-
lar its highly flexible and volatile nature and its heavy dependence on collabora-
tion among creative and skilled people, that in many instances necessitate a con-
struction and management approach radically different from that of building a 
bridge or a ship, and more akin to new product development. However, basic en-
gineering principles of discipline, economy, rigor, quality, and utility, and, to a 
certain extent, repeatability and predictability, still very much apply. As in con-
ventional engineering, value considerations affect the trade-offs among these prin-
ciples, but probably with much more subtlety, severity, and variety than they do in 
the engineering of hard products.  

But why are these trade-offs so important? For no other reason than that they 
ultimately determine the outcome of a software project. The message of those who 
studied the characteristics of successful software organizations and projects is 
pretty strong. Both prominent business school researchers, such as Alan McCor-
mack of the Harvard University and Michael Cusumano of the Massachusetts In-
stitute of Technology, and software engineering thought leaders, such as Tom 
DeMarco, Larry Constantine, and Tim Lister, have repeatedly pointed out to the 
importance of value factors and the underlying trade-offs in their writings. Since 
the mid-1980s, the frequently cited CHAOS reports from the Standish Group have 
consistently identified closely related issues, such as the misalignment of IT 
spending with organizational objectives and user needs, as sources of failure in 
software projects. Our main purpose in the production of this book was to draw at-
tention to these issues, which are impossible to reason about in a value-neutral and 
ad hoc setting. 
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The Scope of the Book 

The International Organization for Standardization (ISO) defines software engi-
neering as “the systematic application of scientific and technological knowledge, 
methods, and experience to the design, implementation, testing, and documenta-
tion of software to optimize its production, support, and quality” (Information 
Technology: Vocabulary, Part 1, Fundamental Terms). While the ISO definition 
might suffice in a value-neutral setting, we must extend the scope considerably to 
address value considerations effectively. Three shortcomings of this definition are 
remarkable from a value-oriented perspective.  

First is its exclusion of economics, management science, cognitive sciences, 
and humanities from the body of knowledge required to create successful software 
systems. Value-based software engineering however cannot ignore this body of 
knowledge because it considers software development as a purposeful activity car-
ried out by people for people.  

The second shortcoming of the ISO definition is its delimitation of software 
development by technical activities such as design, implementation, and testing. 
VBSE in contrast must also consider, as part of the software engineering lifecycle, 
management-oriented activities – such as business case development, project 
evaluation, project planning, process selection, project management, risk man-
agement, process measurement, and monitoring – that have often been considered 
peripheral. VBSE as such is a multifaceted, multidisciplinary approach that covers 
all practices, activities, and phases involved in software development, addressing a 
wide variety of decisions about technical issues, business models, software devel-
opment processes, software products and services, and related management prac-
tices.

The third shortcoming of the ISO definition is its failure to explicitly recognize 
the ultimate goal: ensuring that software systems continue to meet and adapt to 
evolving human and organizational needs to create value. VBSE must put these 
needs foremost. According to VBSE, it is not enough, or at times not even critical, 
for software projects to merely meet unilaterally preset schedule, budget, process, 
and quality objectives. Rather, it is necessary that the resulting products and ser-
vices persist to increase the wealth of the stakeholders and optimize other relevant 
value objectives of these projects. 

Who Should Read This Book? 

This book is intended for those who care about the impact of value considerations 
in software development activities and decisions. And who should care about such 
considerations? Well, just about everyone: academics, managers, practitioners, 
and students of software engineering who recognize that software is not created in 
a void, that software development involves many participants – executives, project 
managers, business analysts, developers, quality assurance experts, users, the gen-
eral public, and so on – with varying roles and stakes in both the final products 
and the processes used the create those products.  
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The book appeals particularly to readers who are interested in high-level as-
pects of software engineering decision making because of its focus on organiza-
tional, project-, process-, and product-level issues rather than on low-level, purely 
technical decisions. The target audience includes, but is not limited to:  
• product managers, project managers, chief information officers who make high-

level decisions;  
• process experts, measurement experts, requirements engineers, business ana-

lysts, quality assurance experts, usability experts, and technical leads who par-
ticipate in various lifecycle activities at key interface points and whose influ-
ence span multiple levels and phases;  

• software engineering researchers, educators, and graduate students who teach 
or study software process, evaluate existing and new practices, technologies, 
methods, or products, or teach or investigate managerial, social, and economic 
aspects of software development. 

To benefit from this book, the reader should have at least taken advanced courses 
or studied advanced texts on software engineering or software process, or worked 
in the software industry long enough to acquire an appreciation of the many trade-
offs involved from beyond a purely technical perspective. 

How Is the Book Organized? 

We organized the book in three parts. Part 1 focuses on the foundations of VBSE 
and provides examples of frameworks for reasoning about value considerations in 
software development activities. Part 2 provides methods and techniques for 
VBSE that build upon the foundations and frameworks presented in Part 1. Fi-
nally, Part 3 demonstrates the benefits of VBSE through concrete examples and 
case studies.

While we believe that all chapters contain ideas applicable in a variety of situa-
tions, because the book addresses a wide spectrum of issues and activities, certain 
chapters will inevitably be more relevant to some readers than others, depending 
on the reader’s orientation. We recommend that all readers familiarize themselves 
with Chapter 1 regardless of their interests, as this chapter sets the tone for the rest 
of the book. There are many ways to dissect the content according to particular in-
terest areas. We hope that the following road map will help orient the reader who 
wishes to quickly zoom in on a specific topic. 

If you are interested in project-level decisions, economic valuation of software 
projects and assets, and reasoning under uncertainty, make sure to read Chapters 
3, 5, and 17. Readers interested in VBSE-related concepts and theories applicable 
to a range of software engineering lifecycle activities should start with Chapters 2, 
4, 6, and 8. Chapters 7, 9, and 12 are recommended reading for those with an in-
terest in product planning, and Chapters 6, 7, and 9 for those focusing on require-
ments gathering and negotiation. If the focus is on software process issues and tool 
adoption, Chapters 6, 8, 13, 15, and 16 discuss approaches that aid in process im-
provement and measurement as well as impact evaluation. Chapters 4, 10, 11, 
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and 14 will appeal to the reader interested in product evaluation and testing-related 
issues. Chapters 8, 14, and 15 will appeal to those who tackle knowledge man-
agement problems. Finally, Chapters 3, 5, 6, and 13 are relevant to readers who 
are interested in risk management. 

Whatever your orientation and interests, we hope that the book will inspire you 
to incorporate value considerations to your own work, or, if you have already been 
operating in a value-conscious setting, that you will find new insights and re-
sources to draw upon. Good reading! 
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