Skip to main content

Modeling Cell-Mediated Immunity by Means of P Systems

  • Chapter
Applications of Membrane Computing

Part of the book series: Natural Computing Series ((NCS))

  • 974 Accesses

Abstract

The immune system represents the natural defense of an organism. It comprises a network of cells, molecules, and organs whose primary tasks are to defend the organism from pathogens, and to maintain its integrity. Since our knowledge of the immune system is still incomplete, formal modeling can help provide a better understanding of its underlying principles and organization. In this chapter we provide a brief introduction to the biology of the immune system, recalling several approaches used in the modeling of the immune system, and then describe a model based on P systems. Starting from a variant of P systems called client-server P systems, we use an abstract simulator as a useful intermediate step from a formal theory suitable for theoretical results to a software implementation of a molecular network. Finally, our approach leads to novel software able to provide new insights into the interactions influencing T cell behavior with the use of statistical correlations of the software experiments’ results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. N. Bellomo, M. Lo Schiavo: Lecture Notes on the Generalized Boltzmann Equation. World Scientific, Singapore, 2000.

    Google Scholar 

  2. E. Benjamini, R. Coico, G. Sunshine: Immunology: A Short Course. Wiley, 2000.

    Google Scholar 

  3. F. Burnet: The Clonal Selection Theory of Acquired Immunity. Vanderbilt University, Nashville, 1959.

    Google Scholar 

  4. C. Chan: Modeling T Cell Activation. PhD thesis, Center for Nonlinear Dynamics and its Applications, University College London, 2002.

    Google Scholar 

  5. G. Ciobanu, B. Tanasă, D. Dumitriu, D. Huzum, G. Moruz: Simulation and Prediction of T Cell Responses. Proc. 3rd Conf. on Systems Biology ICSB’02, Stockholm, 2002, 88–89.

    Google Scholar 

  6. G. Ciobanu, D. Dumitriu, D. Huzum, G. Moruz, B. Tanasă: Client-Server P Systems in Modeling Molecular Interaction. In Membrane Computing, WMC-CdeA 2002, Curtea de Argeş, Romania, Revised Papers (Gh. Păun, G. Rozenberg, A. Salomaa, C. Zandron, eds.), LNCS 2597, Springer, 2003, 203–218.

    Google Scholar 

  7. G. Ciobanu, D. Huzum: Discrete Event Systems and Client-Server Model for Signaling Mechanisms. In Computational Methods in Systems Biology (C. Priami, ed.), LNCS 2602, Springer, Berlin, 2003, 175–177.

    Chapter  Google Scholar 

  8. D. Dasgupta, ed.: Artificial Immune Systems and Their Applications. Springer, 1999.

    Google Scholar 

  9. S. Forrest, S.A. Hofmeyr: Immunology as Information Processing. In Design Principles for the Immune System and Other Distributed Autonomous Systems (L.A. Segel, I. Cohen, eds.), Oxford University Press, 2001.

    Google Scholar 

  10. M.A. Gibson: Computational Methods for Stochastic Biological Systems. PhD thesis, California Institute of Technology, 2000.

    Google Scholar 

  11. D.T. Gillespie: Exact Simulation of Coupled Chemical Reactions. J. Physical Chemistry, 1977.

    Google Scholar 

  12. D.T. Gillespie: A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions. J. Computational Physics, 1977.

    Google Scholar 

  13. Z. Grossman, A. Singer: Tuning of Activation Thresholds Explains Flexibility in the Selection and Development of T Cells in the Thymus. PNAS, 93 (1996), 14747–14752.

    Article  Google Scholar 

  14. N.K. Jerne: The Immune System. Sci. Am., 229,1 (1973), 52–60.

    Article  Google Scholar 

  15. N.K. Jerne: Towards a Network Theory of the Immune System. Ann. Immunol. (Inst. Pasteur), 125C (1974), 373–389.

    Google Scholar 

  16. M. Kaufman, J. Urbain, R. Thomas: Towards a Logical Analysis of the Immune Response. J. Theor. Biol. 114 (1985), 527.

    Article  MathSciNet  Google Scholar 

  17. S. Motta, V. Brusic: Mathematical Modeling of the Immune System. In Modelling in Molecular Biology (G. Ciobanu, G. Rozenberg, eds.), Springer, Berlin, 2004, 193–218.

    Google Scholar 

  18. P. Myung, N. Boerthe, G. Koretzky: Adapter Proteins in Lymphocyte Antigen-Receptor Signaling. Current Opinion in Immunology, 12 (2000), 256–266.

    Article  Google Scholar 

  19. Gh. Păun: Computing with Membranes. Journal of Computer and System Sciences, 61 (2000), 108–143.

    Article  MATH  MathSciNet  Google Scholar 

  20. Gh. Păun: Membrane Computing. An Introduction. Springer, Berlin, 2002.

    MATH  Google Scholar 

  21. A.S. Perelson, Ed.: Theoretical Immunology. SFI Studies in the Sciences of Complexity, Addison-Wesley, Boston, 1988.

    Google Scholar 

  22. A.S. Perelson, G. Weisbuch: Immunology for Physicists. Rev. Mod. Phys., 69 (1997), 1219–1267.

    Article  Google Scholar 

  23. N. Rao, I. Dodge, H. Band: The Cbl Family of Ubiquitin Ligases: Critical Negative Regulators of Tyrosine Kinase Signaling in the Immune System. Journal of Leukocyte Biology, 71 (2002), 753–763.

    Google Scholar 

  24. I. Roitt, J. Brostoff, D. Male: Immunology, 6th edn. Harcourt, 2001.

    Google Scholar 

  25. C. Rudd, H. Schneider: Cbl Sets the Threshold for Autoimmunity. Current Biology, 10 (2000), 344–347.

    Article  Google Scholar 

  26. G. Weisbuch, H. Atlan: Control of the Immune Response. J. Phys. A, 21 (1988), 189–192.

    Article  Google Scholar 

  27. R.M. Zorzenon Dos Santos: Immune Responses: Getting Close to Experimental Results with Cellular Automata Models. In Annual Reviews of Computational Physics (D. Stauffer, ed.), Vol. V, World Scientific, Singapore, 1999, 159–202.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ciobanu, G. (2006). Modeling Cell-Mediated Immunity by Means of P Systems. In: Ciobanu, G., Păun, G., Pérez-Jiménez, M.J. (eds) Applications of Membrane Computing. Natural Computing Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29937-8_5

Download citation

  • DOI: https://doi.org/10.1007/3-540-29937-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25017-3

  • Online ISBN: 978-3-540-29937-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics