Skip to main content

Test Tube Selection of Large Independent Sets of DNA Oligonucleotides

  • Chapter
Nanotechnology: Science and Computation

Part of the book series: Natural Computing Series ((NCS))

7 Conclusion

Self-assembly of nanostructures through template-matching hybridization reactions is potentially an important technique in nanotechnology. Given the possibility of errors in hybridization and the difficulty of designing DNA sequences on conventional computers, a viable alternative is to manufacture libraries of oligonucleotides for nanotechnology applications in the test tube. Thus, a protocol has been designed and tested to select mismatched oligonucleotides from a random starting material. Experiments indicate that the selected oligonucleotides are independent, and that there are about 10 000 distinct sequences. Such manufactured libraries are a potential enabling resource for DNA self-assembly in nanotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L.M. Adleman, Molecular computation of solutions to combinatorial problems, Science, 266 (1994) 1021–1024.

    Google Scholar 

  2. A. Bachtold, P. Hadley, T. Nakanishi, C. Dekker, Logic circuits with carbon nanotube transistors, Science, 294 (2001) 1317–1320.

    Article  Google Scholar 

  3. H. Bi, J. Chen, R. Deaton, M. Garzon, H. Rubin, D.H. Wood, In Vitro selection for non-crosshybridizing oligonucleotides for computation, Natural Comput., 2 (2003) 417–426.

    Article  MathSciNet  Google Scholar 

  4. V.A. Bloomfield, D.M. Crothers, I. Tinoco Jr., Nucleic Acids: Structures, Properties, and Functions, University Science Books, Sausalito, CA, 2000.

    Google Scholar 

  5. E. Braun, U. Sivan, DNA-templated electronics, Nanobiotechnology, C.M. Niemeyer, C.A. Mirkin eds., Wiley-VCH, Weinheim, (2004) 244–255.

    Google Scholar 

  6. R.J. Britten, D.E. Kohne, Repeated sequences in DNA, Science, 161 (1968) 529–540.

    Google Scholar 

  7. J. Charlton, D. Smith, Estimation of SELEX pool size by measurement of DNA renaturation rates, RNA, 5 (1999) 1326–1332.

    Google Scholar 

  8. J. Chen, R. Deaton, M. Garzon, J.W. Kim, D.H. Wood, H. Bi, D. Carpenter, Y.Z. Wang, Characterization of the non-crosshybridizing DNA oligonucleotides manufactured in vitro, DNA Computing: Preliminary Proceedings of the 10th International Workshop on DNA-Based Computers, G. Mauri, L. Smith eds., Lecture Notes in Computer Science 3384 University of Milano-Bicocca, Milan, (2004) 50–61.

    Google Scholar 

  9. J. Chen, R. Deaton, M. Garzon, J.W. Kim, D.H. Wood, H. Bi, D. Carpenter, J.S. Lee, Y.Z. Wang, Sequence complexity of large libraries of DNA oligonucleotides, DNA Computing: Preliminary Proceedings of the 11th International Workshop on DNA-Based Computers, N. Pierce, A. Carbone eds., University of Western Ontario, London, Ontario, Canada, 2005.

    Google Scholar 

  10. J. Chen, J. Reif, eds., DNA Computing: 9th International Workshop on DNABased Computers, Lecture Notes in Computer Science, 2943 Springer, Berlin, Heidelberg, 2004.

    Google Scholar 

  11. R. Deaton, M. Garzon, J.A. Rose, D.R. Franceschetti, R.C. Murphy, S.E. Stevens Jr., Reliability and efficiency of a DNA based computation, Phys. Rev. Lett., 80 (1998) 417–420.

    Article  Google Scholar 

  12. R. Deaton, J.W. Kim, J. Chen, Design and test of non-crosshybridizing oligonucleotide building blocks for DNA computers and nanostructures, Appl. Phys. Lett., 82 (2003) 1305–1307.

    Article  Google Scholar 

  13. R. Deaton, J. Chen, H. Bi, J.A. Rose, A software tool for generating noncrosshybridizing libraries of DNA oligonucleotides, DNA Computing: 8th International Workshop on DNA-Based Computers, M. Hagiya, A. Ohuchi eds., Lecture Notes in Computer Science, 2568 Springer, Berlin, Heidelberg, (2003) 252–261.

    Google Scholar 

  14. R. Deaton, J. Chen, H. Bi, M. Garzon, H. Rubin, D.H. Wood, A PCR-based protocol for in vitro selection of non-crosshybridizing oligonucleotides, DNA Computing: 8th International Workshop on DNA-Based Computers, M. Hagiya, A. Ohuchi eds., Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 2568 (2003) 196–204.

    Google Scholar 

  15. A.G. Frutos, Q. Liu, A.J. Thiel, A.M.W. Sanner, A.E. Condon, L.M. Smith, R.M. Corn, Demonstration of a word design strategy for DNA computing on surfaces, Nucleic Acids Res., 25 (1997) p. 4748.

    Article  Google Scholar 

  16. M.R. Garey, D.S. Johnson, Computers and Intractability, Freeman, New York, 1979.

    Google Scholar 

  17. M.H. Garzon, R.J. Deaton, Codeword design and information encoding in DNA ensembles, Natural Comput., 3 (2004) 253–292.

    Article  MathSciNet  Google Scholar 

  18. M. Hagiya, A. Ohuchi, eds., DNA Computing: 8th International Workshop on DNA-Based Computers, Lecture Notes in Computer Science, 2568 Springer, 2003.

    Google Scholar 

  19. K. Keren, R.S. Berman, E. Buchstab, U. Sivan, E. Braun, DNA-templated carbon nanotube field-effect transistor, Science, 302 (2003) 1380–1382.

    Article  Google Scholar 

  20. A. Marathe, A.E. Condon, R.M. Corn, On combinatorial DNA word design, DNA Based Computers V, E. Winfree, D.K. Gifford, eds., Providence, RI, DIMACS, American Mathematical Society, (1999) 75–90.

    Google Scholar 

  21. G. Mauri, L. Smith, eds., DNA Computing: Preliminary Proceedings of the 10th International Workshop on DNA-Based Computers, Lecture Notes in Computer Science 3384, Springer, Berlin, Heidelberg, 2005.

    Google Scholar 

  22. C. Mirkin, R. L. Letsinger, R. C. Mucic, J. J. Storhoff, A DNA-based method for rationally assembling nanoparticles into macroscopic materials, Nature, 382 (1996) 607–609.

    Article  Google Scholar 

  23. C.M. Niemeyer, C.A. Mirkin, eds., Nanobiotechnology, Wiley-VCH, Weinheim, 2004.

    Google Scholar 

  24. J. SantaLucia Jr., A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics, Proc. Natl. Acad. Sci. USA, 95 (1998) 1460–1465.

    Article  Google Scholar 

  25. N.C. Seeman, H. Wang, X. Yang, F. Liu, C. Mao, W. Sun, L. Wenzler, Z. Shen, R. Sha, H. Yan, M.H. Wong, P. Sa-Ardyen, B. Liu, H. Qiu, X. Li, J. Qi, S.M. Du, Y. Zhang, J.E. Mueller, T. Fu, Y. Wang, J. Chen, New motifs in DNA nanotechnology, Nanotechnology, 9 (1998) 257–273.

    Article  Google Scholar 

  26. N.C. Seeman, H. Wang, B. Liu, J. Qi, X. Li, X. Yang, F. Liu, W. Sun, Z. Shen, R. Sha, C. Mao, Y. Wang, S. Zhang, T. Fu, S. Du, J.E. Mueller, Y. Zhang, J. Chen, The perils of polynucleotides: the experimental gap between the design and assembly of unusual DNA structures, Proceedings of the Second Annual Meeting on DNA Based Computers L.F. Landweber, E.B. Baum eds., 44 PRovidence, Ri, DIMACS, American Mathematical Society, (1998) 191–205.

    Google Scholar 

  27. N.C. Seeman, DNA nanostructures for mechanics and computing: nonlinear thinking with life’s central molecule, Nanobiotechnology, C.M. Niemeyer, C.A. Mirkin eds., Wiley-VCH, Weinheim, (2004) 308–318.

    Google Scholar 

  28. C.S. Thaxton, C.A. Mirkin, DNA-gold nanoparticle conjugates, Nanobiotechnology, C.M. Niemeyer, C.A. Mirkin eds., Wiley-VCH, Weinheim, (2004) 288–307.

    Google Scholar 

  29. J.G. Wetmur, DNA probes: applications of the principle of nucleic acid hybridization, Crit. Rev. Biochem. Mol. Bio., 26 (1991) 227–259.

    Google Scholar 

  30. G.M. Whitesides, M. Boncheva, Characterization of synthetic DNA bar codes in Saccharomyces cerevisiae gene-deletion strains, Proc. Natl. Acad. Sci. USA, 101 (2004) 11046–11051.

    Article  Google Scholar 

  31. G.M. Whitesides, M. Boncheva, Beyond molecules: self-assembly of mesoscopic and macroscopic components, Proc. Natl. Acad. Sci. USA, 99 (2002) 4769–4774.

    Article  Google Scholar 

  32. E. Winfree, F. Liu, L.A. Wenzler, N.C. Seeman, Design and self-assembly of two-dimensional DNA crystals, Nature, 394 (1998) 539–544.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Deaton, R., Chen, J., Kim, JW., Garzon, M.H., Wood, D.H. (2006). Test Tube Selection of Large Independent Sets of DNA Oligonucleotides. In: Chen, J., Jonoska, N., Rozenberg, G. (eds) Nanotechnology: Science and Computation. Natural Computing Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-30296-4_9

Download citation

  • DOI: https://doi.org/10.1007/3-540-30296-4_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30295-7

  • Online ISBN: 978-3-540-30296-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics