Skip to main content

Least-Squares Support Vector Machines for Scheduling Transmission in Wireless Networks

  • Conference paper
Computational Intelligence, Theory and Applications

Part of the book series: Advances in Soft Computing ((AINSC,volume 33))

  • 758 Accesses

Abstract

For the scheduling transmission over a fading channel in wireless networks, the performance increases significantly if a specialized packet scheduler is used. The properties of this scheduler demand a learning mechanism. For this purpose, a least squares support vector machine (LS-SVM) is proposed as the learning mechanism. In the SVM methodology the number of the unknown can be infinitely dimensional. The given method is illustrated by some numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.A. Berry, R.G. Gallager, “Communication over Fading Channels with Delay Constraints”, IEEE Trans. on Information Theory, Vol. 48, No. 5, 2002, pp. 1135–1149.

    Article  MathSciNet  Google Scholar 

  2. V. Cherkassky, F. Mulier, Learning from Data: Concepts, Theory and Methods”, John Wiley and Sons, New York, 1998.

    MATH  Google Scholar 

  3. C. Cortes, V.N. Vapnik, “Support Vector Networks”, Machine Learning, Vol. 20, 1995, pp. 273–297.

    MATH  Google Scholar 

  4. N. Cristianini, J. Shawee-Taylor, “An Introduction to Support Vector Machines”, Cambridge University Press, Cambridge, 2000.

    Google Scholar 

  5. M. Goyal, A. Kumar, V. Sharma, “Power Constrained and Delay Optimal Policies for Scheduling Transmission over a Fading Channel”, IEEE INFOCOM 2003, pp. 311–320.

    Google Scholar 

  6. T. Joachims, “Estimating the Generalization Performance of SVM Efficiently”, in: Proc. 17th Conf. Machine Learning, Morgan Kaufman, San Francisco, CA, 2000, [URL http://www.kernel-machines.org/]

    Google Scholar 

  7. B.J. de Kruif, T.J.A. de Vries, “On Using a Support Vector Machine in Learning Feed-Forward Control”, IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronic, Vol. 1, 2001, pp. 272–277.

    Article  Google Scholar 

  8. B. Schölkopf, C.J.C. Burges, A.J. Smola, “Advances in Kernel Methods-Support Vector Learning”, MIT Press, Cambridge, MA, 1999.

    Google Scholar 

  9. R. Schölkopf, A. J. Smola, R. Willianson, P. Bartlett, “New Support Vector Algorithms”, Neural Computing, Vol. 12, No. 5, 2000, pp. 1207–1245.

    Article  Google Scholar 

  10. A. Smola, B. Schölkopf, “A Tutorial on Support Vector Regression”, Royal Holloway Coll. Univ. London, UK, 1998, [URL http://www.kernel-machines.org/]

    Google Scholar 

  11. J.A.K. Suykens, L. Lukas, P. Van Dooren, B. De Moor, J. Vandewalle, “Least Square Support Vector Machine Classifiers: a Large Scale Algorithm”, Proc. of the European Conference on Circuit Theory and Design, ECCTD’ 99, Vol. 2, 1999, pp. 839–842.

    Google Scholar 

  12. J.A.K. Suykens, J. Vandewalle, B. De Moor, “Optimal Control by Least Squares Support Vector Machines”, Neural Networks, Vol. 14, No. 1, 2001, pp. 23–35.

    Article  Google Scholar 

  13. J.A.K. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor, J. Vandewalle, “Last Squares Support Vector Machines”, World Scientific Pub. Co., Singapore, 2002.

    Google Scholar 

  14. LS-SVMLab Toolbox [URL http://www.esat.kuleuven.ac.be/sista/lssvmlab/toolbox.html]

    Google Scholar 

  15. V.N. Vapnik, “The Nature of Statistical Learning Learning Theory”, Springer-Verlag, New York, 1995.

    MATH  Google Scholar 

  16. V.N. Vapnik, S.G. Golowich, A. Smola, “Support Vector Method for Function Approximation, Regression and Signal Processing”, in: “Advances in Neural Information Processing Systems”, Vol. 9, MIT Press, Cambridge, MA, 1997.

    Google Scholar 

  17. V.N. Vapnik, “Statistical Learning Theory”, John Wiley and Sons, New York, 1998.

    MATH  Google Scholar 

  18. V.N. Vapnik, “The Support Vector Method of Function Estimation”, in: J.A.K. Suykens, J. Vandewalle (Eds.), “Nonlinear Modeling: Advanced Black-box Techniques”, Kluwer Academic Publishers, Boston, 1998, pp. 55–85.

    Google Scholar 

  19. J.M. Żurada, “Introduction to Artificial Neural Systems”, West Publishing Company, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Martyna, J. (2005). Least-Squares Support Vector Machines for Scheduling Transmission in Wireless Networks. In: Reusch, B. (eds) Computational Intelligence, Theory and Applications. Advances in Soft Computing, vol 33. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-31182-3_56

Download citation

  • DOI: https://doi.org/10.1007/3-540-31182-3_56

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22807-3

  • Online ISBN: 978-3-540-31182-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics