Skip to main content

Locating Closed Hyperstreamlines in Second Order Tensor Fields

  • Chapter
Visualization and Processing of Tensor Fields

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

  • 2713 Accesses

Abstract

The analysis and visualization of tensor fields is an advancing area in scientific visualization. Topology-based methods that investigate the eigenvector fields of second order tensor fields have gained increasing interest in recent years. Most algorithms focus on features known from vector fields, such as saddle points and attracting or repelling nodes. However, more complex features, such as closed hyperstreamlines are usually neglected. In this chapter, a method for detecting closed hyperstreamlines in tensor fields as a topological feature is presented. The method is based on a special treatment of cases where a hyperstreamline reenters a cell and prevents infinite cycling during hyperstreamline calculation. The algorithm checks for possible exits of a loop of crossed edges and detects structurally stable closed hyperstreamlines. These global features cannot be detected by conventional topology and feature detection algorithms used for the visualization of second order tensor fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. D. Bürkle, M. Dellnitz, O. Junge, M. Rumpf, and M. Spielberg. Visualizing complicated dynamics. In A. Varshney, C. M. Wittenbrink, and H. Hagen, editors, IEEE Visualization’ 99 Late Breaking Hot Topics, pp. 33–36, San Francisco, 1999.

    Google Scholar 

  2. T. Delmarcelle and L. Hesselink. The topology of symmetric, secondorder tensor fields. In IEEE Visualization’ 94 Proceedings, pp. 140–147, Los Alamitos, 1994. IEEE Computer Society.

    Google Scholar 

  3. M. Dellnitz and O. Junge. On the Approximation of Complicated Dynamical Behavior. SIAM Journal on Numerical Analysis, 36(2):491–515, 1999.

    Article  MathSciNet  Google Scholar 

  4. J. Guckenheimer and P. Holmes. Dynamical Systems and Bifurcation of Vector Fields. Springer, New York, 1983.

    Google Scholar 

  5. A. Globus, C. Levit, and T. Lasinski. A Tool for Visualizing the Topology of Three-Dimensional Vector Fields. In G. M. Nielson and L. Rosenblum, editors, IEEE Visualization’ 91, pp. 33–40, San Diego, 1991.

    Google Scholar 

  6. L. Hesselink and T. Delmarcelle. Visualizing second order tensor fields with hyperstreamlines. IEEE Computer Graphics and Applications, 13(4):25–33, 1993.

    Article  Google Scholar 

  7. D. H. Hepting, G. Derks, D. Edoh, and R. D. Russel. Qualitative analysis of invariant tori in a dynamical system. In G. M. Nielson and D. Silver, editors, IEEE Visualization’ 95, pp. 342–345, Atlanta, GA, 1995.

    Google Scholar 

  8. J. L. Helman and L. Hesselink. Visualizing Vector Field Topology in Fluid Flows. IEEE Computer Graphics and Applications, 11(3):36–46, May 1991.

    Article  Google Scholar 

  9. L. Hesselink, Y Lavin, and Y. Levy. Singularities in nonuniform tensor fields. In IEEE Visualization’ 97, pp. 59–66. IEEE Computer Society, July 10 1997.

    Google Scholar 

  10. M. W. Hirsch and S. Smale. Differential Equations, Dynamical Systems and Linear Algebra. Academic Press, New York, 1974.

    MATH  Google Scholar 

  11. J. P. M. Hultquist. Constructing Stream Surface in Steady 3D Vector Fields. In Proceedings IEEE Visualization’ 92, pp. 171–177. IEEE Computer Society Press, Los Alamitos CA, 1992.

    Chapter  Google Scholar 

  12. M. Jean. Sur la méthode des sections pour la recherche de certaines solutions presque périodiques de systèmes forces periodiquement. International Journal on Non-Linear Mechanics, 15:367–376, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  13. D. N. Kenwright. Automatic Detection of Open and Closed Separation and Attachment Lines. In D. Ebert, H. Rushmeier, and H. Hagen, editors, IEEE Visualization’ 98, pp. 151–158, Research Triangle Park, NC, 1998.

    Google Scholar 

  14. G. Kindlmann, D. Weinstein, and D. Hart. Strategies for direct volume rendering of diffusion tensor fields. IEEE Transactions on Visualization and Computer Graphics, 6(2):124–138, 2000.

    Article  Google Scholar 

  15. S. Lang. Differential and Riemannian Manifolds. Springer, New York, third edition, 1995.

    MATH  Google Scholar 

  16. J. Stoer and R. Bulirsch. Numerische Mathematik 2. Springer, Berlin, 3 edition, 1990.

    Google Scholar 

  17. G. Scheuermann, B. Hamann, K. I. Joy, and W. Kollmann. Visualizing local Vector Field Topology. Journal of Electronic Imaging, 9(4):356–367, 2000.

    Article  Google Scholar 

  18. M. van Veldhuizen. A New Algorithm for the Numerical Approximation of an Invariant Curve. SIAM Journal on Scientific and Statistical Computing, 8(6):951–962, 1987.

    Article  MATH  Google Scholar 

  19. R. Wegenkittl, H. Löffelmann, and E. Gröller. Visualizing the Behavior of Higher Dimensional Dynamical Systems. In R. Yagel and H. Hagen, editors, IEEE Visualization’ 97 Proceedings, pp. 119–125, Phoenix, AZ, 1997.

    Google Scholar 

  20. T. Wischgoll and G. Scheuermann. Detection and Visualization of Closed Streamlines in Planar Flows. IEEE Transactions on Visualization and Computer Graphics, 7(2):165–172, 2001.

    Article  Google Scholar 

  21. T. Wischgoll and G. Scheuermann. 3D Loop Detection and Visualization in Vector Fields. In Visualization and Mathematics 2002, pp. 151–160, Berlin, Germany, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wischgoll, T., Meyer, J. (2006). Locating Closed Hyperstreamlines in Second Order Tensor Fields. In: Weickert, J., Hagen, H. (eds) Visualization and Processing of Tensor Fields. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-31272-2_15

Download citation

Publish with us

Policies and ethics