Skip to main content

Heart Rate Classification Using Support Vector Machines

  • Conference paper
From Data and Information Analysis to Knowledge Engineering

Abstract

This contribution describes a classification technique that improves the heart rate estimation during hemodialysis treatments. After the heart rate is estimated from the pressure signal of the dialysis machine, a classifier decides if it is correctly identified and rejects it if necessary. As the classifier employs a support vector machine, special interest is put on the automatic selection of its user parameters. In this context, a comparison between different optimization techniques is presented, including a gradient projection method as latest development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • CHANG, C.C. and LIN, C.J. (2005) LIBSVM: A Library for Support Vector Machines. Technical Report, National Taiwan University, Taipei, Taiwan.

    Google Scholar 

  • KECMAN, V., HUANG, T.M. and VOGT, M. (2005) Iterative Single Data Algorithm for Training Kernel Machines from Huge Data Sets. In: Support Vector Machines: Theory and Applications. Springer-Verlag, Berlin.

    Google Scholar 

  • KEERTHI, S. et. al (2001): Improvements to Platt’s SMO Algorithm for SVM Classifier Design. Neural Computation 13, 637–649.

    Article  MATH  Google Scholar 

  • MOISSL, U., WABEL, P., LEONHARDT, S. and ISERMANN, R. (2000): Online-Herzfrequenzerkennung während der Dialysebehandlung mit Hilfe einer neuen Formfilter-Methode. Biomedizinische Technik 45, 417–418.

    Google Scholar 

  • MORÉ, J.J. and TORALDO G. (1989): Algorithms for Bound Constrained Quadratic Programming Problems. Numerische Mathematik 55(4), 377–400.

    Article  MathSciNet  Google Scholar 

  • PLATT, J.C. (1999): Fast Training of Support Vector Machines using Sequential Minimal Optimization. In: Schölkopf, B. et. al (Eds.): Advances in Kernel Methods — Support Vector Learning. MIT Press, Cambridge, MA.

    Google Scholar 

  • SCHÖLKOPF, B. and SMOLA, A. (2002): Lerning with Kernels. MIT Press, Cambridge, MA.

    Google Scholar 

  • VOGT, M. and KECMAN, V. (2005): Active-Set Methods for Support Vector Machines. In: Support Vector Machines: Theory and Applications. Springer-Verlag, Berlin.

    Google Scholar 

  • WABEL, P., MOISSL, U., LEONHARDT, S. and ISERMANN, R. (2002): Ansätze zur Identifikation von Patientenparametern während der Hämodialysetherapie. at — Automatisiserungstechnik 50(5), 220–227.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Berlin · Heidelberg

About this paper

Cite this paper

Vogt, M., Moissl, U., Schaab, J. (2006). Heart Rate Classification Using Support Vector Machines. In: Spiliopoulou, M., Kruse, R., Borgelt, C., Nürnberger, A., Gaul, W. (eds) From Data and Information Analysis to Knowledge Engineering. Studies in Classification, Data Analysis, and Knowledge Organization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-31314-1_88

Download citation

Publish with us

Policies and ethics