Abstract
This contribution describes a classification technique that improves the heart rate estimation during hemodialysis treatments. After the heart rate is estimated from the pressure signal of the dialysis machine, a classifier decides if it is correctly identified and rejects it if necessary. As the classifier employs a support vector machine, special interest is put on the automatic selection of its user parameters. In this context, a comparison between different optimization techniques is presented, including a gradient projection method as latest development.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
CHANG, C.C. and LIN, C.J. (2005) LIBSVM: A Library for Support Vector Machines. Technical Report, National Taiwan University, Taipei, Taiwan.
KECMAN, V., HUANG, T.M. and VOGT, M. (2005) Iterative Single Data Algorithm for Training Kernel Machines from Huge Data Sets. In: Support Vector Machines: Theory and Applications. Springer-Verlag, Berlin.
KEERTHI, S. et. al (2001): Improvements to Platt’s SMO Algorithm for SVM Classifier Design. Neural Computation 13, 637–649.
MOISSL, U., WABEL, P., LEONHARDT, S. and ISERMANN, R. (2000): Online-Herzfrequenzerkennung während der Dialysebehandlung mit Hilfe einer neuen Formfilter-Methode. Biomedizinische Technik 45, 417–418.
MORÉ, J.J. and TORALDO G. (1989): Algorithms for Bound Constrained Quadratic Programming Problems. Numerische Mathematik 55(4), 377–400.
PLATT, J.C. (1999): Fast Training of Support Vector Machines using Sequential Minimal Optimization. In: Schölkopf, B. et. al (Eds.): Advances in Kernel Methods — Support Vector Learning. MIT Press, Cambridge, MA.
SCHÖLKOPF, B. and SMOLA, A. (2002): Lerning with Kernels. MIT Press, Cambridge, MA.
VOGT, M. and KECMAN, V. (2005): Active-Set Methods for Support Vector Machines. In: Support Vector Machines: Theory and Applications. Springer-Verlag, Berlin.
WABEL, P., MOISSL, U., LEONHARDT, S. and ISERMANN, R. (2002): Ansätze zur Identifikation von Patientenparametern während der Hämodialysetherapie. at — Automatisiserungstechnik 50(5), 220–227.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer Berlin · Heidelberg
About this paper
Cite this paper
Vogt, M., Moissl, U., Schaab, J. (2006). Heart Rate Classification Using Support Vector Machines. In: Spiliopoulou, M., Kruse, R., Borgelt, C., Nürnberger, A., Gaul, W. (eds) From Data and Information Analysis to Knowledge Engineering. Studies in Classification, Data Analysis, and Knowledge Organization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-31314-1_88
Download citation
DOI: https://doi.org/10.1007/3-540-31314-1_88
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-31313-7
Online ISBN: 978-3-540-31314-4
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)