Summary
We present an application of fuzzy association rules to find new terms that help the user to search in the web. Once the user has made an initial query, a set of documents is retrieved from the web. Representing these documents as text transactions, each item in the transaction means the presence of the term in the document. From the set of transactions, fuzzy association rules are extracted. Based on the thresholds of support and certainty factor, a selection of rules is carried out and the terms in those rules are offered to the user to be added to the query and to improve the retrieval.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
Agrawal, R., Imielinski, T. & Swami, A. “Mining Association Rules between Set of Items in Large Databases”. In Proc. of the 1993 ACM SIGMOD Conference, 207–216, 1993.
Attar, R. & Fraenkel, A.S. “Local Feedback in Full-Text Retrieval Systems”. Journal of the Association for Computing Machinery 24(3):397–417, 1977.
Au, W.H. & Chan, K.C.C. “An effective algorithm for discovering fuzzy rules in relational databases”. In Proc. Of IEEE International Conference on Fuzzy Systems, vol II, 1314–1319, 1998.
Bodner, R.C. & Song, F. “Knowledge-based approaches to query expansion in Information Retrieval”. In McCalla, G. (Ed.) Advances in Artificial Intelligence: 146–158. New-York, USA: Springer Verlag, 1996.
Bordogna, G., Carrara, P. & Pasi, G. “Fuzzy Approaches to Extend Boolean Information Retrieval”. In Bosc., Kacprzyk, J. Fuzziness in Database Management Systems, 231–274. Germany: Physica Verlag, 1995.
Bordogna, G. & Pasi, G. “A Fuzzy Linguistic Approach Generalizing Boolean Information Retrieval: A Model and Its Evaluation”. Journal of the American Society for Information Science 44(2):70–82, 1993.
Buckley, C., Salton. G., Allan, J. & Singhal, A. “Automatic Query Expansion using SMART: TREC 3”. Proc. of the 3rd Text Retrieval Conference, Gaithersburg, Maryland, 1994.
Chen, H., Ng, T., Martinez, J. & Schatz, B.R. “A Concept Space Approach to Addressing the Vocabulary Problem in Scientific Information Retrieval: An Experiment on the Worm Community System”. Journal of the American Society for Information Science 48(1):17–31, 1997.
Croft, W.B. & Thompson, R.H. “I3R: A new approach to the design of Document Retrieval Systems”. Journal of the American Society for Information Science 38(6), 389–404, 1987.
Delgado, M., Marín, N., Sánchez, D. & Vila, M.A. “Fuzzy Association Rules: General Model and Applications”. IEEE Transactions on Fuzzy Systems 11:214–225, 2003a.
Delgado, M., Marín, N., Martín-Bautista, M.J., Sánchez, D. & Vila, M.A. “Mining Fuzzy Association Rules: An Overview”. 2003 BISC International Workshop on Soft Computing for Internet and Bioinformatics”, 2003b.
Delgado, M., Martín-Bautista, M.J., Sánchez, D. & Vila, M.A. “Mining Text Data: Special Features and Patterns”. In Proc. of EPS Exploratory Workshop on Pattern Detection and Discovery in Data Mining, London, September 2002a.
Delgado, M., Sánchez, D. & Vila, M.A. “Fuzzy cardinality based evaluation of quantified sentences”. International Journal of Approximate Reasoning 23:23–66, 2000c.
Efthimiadis, E. “Query Expansion”. Annual Review of Information Systems and Technology 31:121–187, 1996.
Feldman, R., Fresko, M., Kinar, Y., Lindell, Y., Liphstat, O., Rajman, M., Schler, Y. & Zamir, O. “Text Mining at the Term Level”. In Proc. of the 2nd European Symposium of Principles of Data Mining and Knowledge Discovery, 65–73, 1998.
Freyne J, Smyth B. (2005) Communities, collaboration and cooperation in personalized web search. In Proc. of the 3rd Workshop on Intelligent Techniques for Web Personalization (ITWP’05). Edinburgh, Scotland, UK
Fu, L.M. & Shortliffe, E.H. “The application of certainty factors to neural computing for rule discovery”. IEEE Transactions on Neural Networks 11(3):647–657, 2000.
Gauch, S. & Smith, J.B. “An Expert System for Automatic Query Reformulation”. Journal of the American Society for Information Science 44(3):124–136, 1993.
Hong, T.P., Kuo, C.S. & Chi, S.C. “Mining association rules from quantitative data.” Intelligent Data Analysis 3:363–376, 1999.
Jiang, M.M., Tseng, S.S. & Tsai, C.J. “Intelligent query agent for structural document databases.” Expert Systems with Applications 17:105–133, 1999.
Kanawati R., Jaczynski M., Trousse B., Andreoli J.M. (1999) Applying the Broadway recommendation computation approach for implementing a query refinement service in the CBKB meta search engine. In Proc. of the French Conference of CBR (RaPC99), Palaiseau, France
Kraft, D.H., Martín-Bautista, M.J., Chen, J. & Sánchez, D. “Rules and fuzzy rules in text: concept, extraction and usage”. International Journal of Approximate Reasoning 34, 145–161, 2003.
Korfhage R.R. (1997) Information Storage and Retrieval. John Wiley & Sons, New York
Kuok, C.-M., Fu, A. & Wong, M.H. “Mining fuzzy association rules in databases,” SIGMOD Record 27(1):41–46, 1998.
Lee, J.H. & Kwang, H.L. “An extension of association rules using fuzzy sets”. In Proc. of IFSA’97, Prague, Czech Republic, 1997.
Lin, S.H., Shih, C.S., Chen, M.C., Ho, J.M., Ko, M.T., Huang, Y.M. “Extracting Classification Knowledge of Internet Documents with Mining Term Associations: A Semantic Approach”. In Proc. of ACM/SIGIR’98, 241–249. Melbourne, Australia, 1998.
Miller, G. “WordNet: An on-line lexical database”. International Journal of Lexicography 3(4):235–312, 1990.
Mitra, M., Singhal, A. & Buckley, C. “Improving Automatic Query Expansion”. In Proc. Of ACM SIGIR, 206–214. Melbourne, Australia, 1998.
Moliniari, A. & Pasi, G. “A fuzzy representation of HTML documents for information retrieval system.” Proceedings of the fifth IEEE International Conference on Fuzzy Systems, vol. I, pp. 107–112. New Orleans, EEUU, 1996.
Peat, H.P. & Willet, P. “The limitations of term co-occurrence data for query expansion in document retrieval systems”. Journal of the American Society for Information Science 42(5), 378–383, 1991.
Qui, Y. & Frei, H.P. “Concept Based Query Expansion”. In Proc. Of the Sixteenth Annual International ACM-SIGIR’93 Conference on Research and Development in Information Retrieval, 160–169, 1993.
Rajman, M. & Besançon, R. “Text Mining: Natural Language Techniques and Text Mining Applications”. In Proc. of the 3rd International Conference on Database Semantics (DS-7). Chapam & Hall IFIP Proceedings serie, 1997.
Salton, G. & Buckley, C. “Term weighting approaches in automatic text retrieval”. Information Processing and Management 24(5), 513–523, 1988.
Salton, G. & McGill, M.J. Introduction to Modern Information Retrieval. McGraw-Hill, 1983.
Srinivasan, P., Ruiz, M.E., Kraft, D.H. & Chen, J. “Vocabulary mining for information retrieval: rough sets and fuzzy sets”. Information Processing and Management 37:15–38, 2001.
Van Rijsbergen, C.J., Harper, D.J. & Porter, M.F. “The selection of good search terms”. Information Processing and Management 17:77–91, 1981.
Vélez, B., Weiss, R., Sheldon, M.A. & Gifford, D.K. “Fast and Effective Query Refinement”. In Proc. Of the 20th ACM Conference on Research and Development in Information Retrieval (SIGIR’97). Philadelphia, Pennsylvania, 1997.
Voorhees, E. “Query expansion using lexical-semantic relations. Proc. of the 17th International Conference on Research and Development in Information Retrieval (SIGIR). Dublin, Ireland, July, 1994.
Xu, J. & Croft, W.B. “Query Expansion Using Local and Global Document Analysis”. In Proc. of the Nineteenth Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 4–11, 1996.
Zadeh, L.A. “A computational approach to fuzzy quantifiers in natural languages”. Computing and Mathematics with Applications 9(1):149–184, 1983.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Martín-Bautista, M.J., Sánchez, D., Serrano, J.M., Vila, M.A. (2006). Helping Users in Web Information Retrieval Via Fuzzy Association Rules. In: Herrera-Viedma, E., Pasi, G., Crestani, F. (eds) Soft Computing in Web Information Retrieval. Studies in Fuzziness and Soft Computing, vol 197. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-31590-X_11
Download citation
DOI: https://doi.org/10.1007/3-540-31590-X_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-31588-9
Online ISBN: 978-3-540-31590-2
eBook Packages: EngineeringEngineering (R0)