Skip to main content

Artificial Software Agents as Representatives of Their Human Principals in Operating-Room-Team-Forming

  • Chapter
Multiagent Engineering

Part of the book series: International Handbooks on Information Systems ((INFOSYS))

  • 625 Accesses

Abstract

The scheduling of centralized operating theatres in large hospitals can be regarded as an archetypal cooperative decision problem. Multiagent systems (MAS) form an appealing paradigm for solving such problems. In a MAS-setting, each involved individual can be represented by an intelligent software agent that carries the specific constraints and the main preference-structures of his human principal. The scheduling can then be done by inter-agent negotiations, resulting in a cooperative solution, which optimizes “social welfare” and medical and organizational resource allocation simultaneously. For measuring human preference structures a concept based on conjoint analysis is introduced, that deduces individual utility functions suitable for inter-agent negotiations from human preference statements. Aggregation of individual preferences to find a final compromise schedule is then done by a distributed negotiation mechanism, based on the Nash-Bargaining-Solution of game theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Addelman, S.: Orthogonal Main-Effect Plans for Asymmetrical Factorial Experiments. In: Technometrics 4(1962)1, pp. 21–46.

    Article  MATH  MathSciNet  Google Scholar 

  2. Becker, M.; Czap, H.; Poppensieker, M.; Stotz, A.: Estimating Utility-Functions for Negotiating Agents: Using Conjoint Analysis as an Alternative Approach to Expected Utility Measurement. In: Eymann, T.; Klügl, F.; Lamersdorf, W.; Klusch, M.; Huhns, M. N. (Eds.): Multiagent System Technologies 2005. Springer Lecture Notes on Artificial Intelligence (LNAI), vol. 3550. Berlin et al., 2005, pp. 94–105.

    Google Scholar 

  3. Becker, M.; Heine, C.; Herrler, R.; Krempels, K.-H.: a) Ont-HoS — an Ontology for Hospital Scenarios. In: Moreno, A; Nealon, J. (Eds.): Applications of Software Agent Technology in the Health Care Domain. Whitestein Series in Software Agent Technologies (WSSAT). Basel, 2003, pp. 87–103.

    Google Scholar 

  4. Becker, M.; Krempels, K.-H.; Navarro, M.; Panchenko, A.: Agent Based Scheduling of Operation Theaters. In: Rudomin, I; Vazquez-Salceda, J.; de Leon Santiago, JLD (Eds.): e-Health: Application of Computing Science in Medicine and Health Care. Mexico-City, 2003, pp. 220–227.

    Google Scholar 

  5. Czap, H.; Becker, M.: Multi-Agent Systems and Microeconomic Theory: A Negotiation Approach to Solve Scheduling Problems in High Dynamic Environments. In: Proceedings of 36th Annual Hawaii International Conference on System Sciences (CD-Rom). Hawaii, 2003.

    Google Scholar 

  6. Czap, H.; Becker, M.; Poppensieker, M.; Stotz, A.: Utility-Based Agents for Hospital Scheduling: A Conjoint-Analytical Approach. In: Proceedings of AAMAS Workshop — MAS*BIOMED’ 05 (Multi-Agent Systems for Medicine, Computational Biology, and Bioinformatics). Utrecht, 2005, pp. 1–15.

    Google Scholar 

  7. Jacroux, M.: A Note on the Determination and Construction of Minimal Orthogonal Main-Effect Plans. In: Technometrics 34(1992)1, pp. 92–96.

    Article  MATH  MathSciNet  Google Scholar 

  8. Klein, M.: Die Conjoint-Analyse: Eine Einführung in das Verfahren mit einem Ausblick auf mögliche sozialwissenschaftliche Anwendungen. In: ZA-Information 50(2002), pp. 7–45.

    Google Scholar 

  9. Luce, R. D.; Tukey, J. W.: Simultaneous Conjoint Measurement: A New Type of Fundamental Measurement. In: Journal of Mathematical Psychology 1(1964), pp. 1–27.

    Article  MATH  Google Scholar 

  10. Nash, J. F.: The Bargaining Problem. In: Econometrica 18(1950) pp. 155–162.

    Article  MathSciNet  Google Scholar 

  11. Schiaffino, S., Amandi, A.: User — Interface Agent Interaction: Personalization Issues. In: International Journal of Human-Computer Studies 60(2004), pp. 129–148.

    Article  Google Scholar 

  12. Von Neumann, J.; Morgenstern, O.: Theory of Games and Economic Behavior. Princenton University Press, Princeton, 1947.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Berlin · Heidelberg

About this chapter

Cite this chapter

Becker, M., Czap, H. (2006). Artificial Software Agents as Representatives of Their Human Principals in Operating-Room-Team-Forming. In: Kirn, S., Herzog, O., Lockemann, P., Spaniol, O. (eds) Multiagent Engineering. International Handbooks on Information Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-32062-8_12

Download citation

  • DOI: https://doi.org/10.1007/3-540-32062-8_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31406-6

  • Online ISBN: 978-3-540-32062-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics