Skip to main content

Merging Probabilistic and Fuzzy Frameworks for Uncertain Spatial Knowledge Modelling

  • Conference paper
Computer Recognition Systems

Part of the book series: Advances in Soft Computing ((AINSC,volume 30))

Abstract

The issues of spatial knowledge representation for mobile robots are considered. Two types of maps, grid and feature based, and two uncertainty representations, probabilistic and fuzzy are merged in one framework to obtain accurate and consistent geometric maps of the environment from range sensor readings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bolc L., Borodziewicz W., Wójcik M. (1991) Fundamentals of Uncertain and Incomplete Information Processing (in Polish), PWN, Warsaw.

    Google Scholar 

  2. Castellanos J., Tardòs J. (1999) Mobile Robot Localization and Map Building. A Multisensor Fusion Approach, Kluwer, London.

    Google Scholar 

  3. Duda R., Hart P., Stork D. (2001) Pattern Classification, J. Wiley & Sons, New York.

    MATH  Google Scholar 

  4. Gasós J., Rosetti A. (1999) Uncertainty Representation for Mobile Robots: Perception, Modeling and Navigation in Unknown Environments, Fuzzy Sets and Syst., 107:1–24.

    Article  Google Scholar 

  5. Oriolo G., Ulivi G., Vendittelli M. (1997) Fuzzy Maps: A New Tool for Mobile Robot Perception and Planning, J. of Robotic Syst., 14(3):179–197.

    Article  Google Scholar 

  6. Pfister S. (2002) Weighted Line Fitting and Merging, Tech. Rep., California Inst. of Tech.

    Google Scholar 

  7. Ribo M., Pinz A. (2001) A Comparison of Three Uncertainty Calculi for Building Sonar-based Occupancy Grids, Robotics and Autonom. Syst., 35:201–209.

    Article  MATH  Google Scholar 

  8. Skrzypczyński P. (1997) 2D and 3D World Modelling Using Optical Scanner Data, in: Intelligent Robots: Sensing, Modeling and Planning, (R. Bolles et al., eds.), World Scienti-c, Singapore, 211–228.

    Google Scholar 

  9. Smith R., Cheeseman P. (1987) On the Estimation and Representation of Spatial Uncertainty, Int. J. of Robotics Research, 5(4):56–68.

    Article  Google Scholar 

  10. Thrun S. (2002) Robotic Mapping: A Survey, Tech. Rep., CMU-CS-02-111.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Skrzypczyński, P. (2005). Merging Probabilistic and Fuzzy Frameworks for Uncertain Spatial Knowledge Modelling. In: Kurzyński, M., Puchała, E., Woźniak, M., żołnierek, A. (eds) Computer Recognition Systems. Advances in Soft Computing, vol 30. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-32390-2_51

Download citation

  • DOI: https://doi.org/10.1007/3-540-32390-2_51

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25054-8

  • Online ISBN: 978-3-540-32390-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics