
Soft Modeling of Group Dynamics and Behavioral

Attributes

Soumya Banerjee
1
, Ajith Abraham

2
, Sang Yong Han

21 and Mahanti P.K.
3

1
Dept. of Computer Applications, Institute of Management Studies, India

soumyabanerjee@imsddun.com
2
School of Computer Science and Engineering, Chung-Ang University, Korea

aith.abraham@ieee.org, hansy@cau.ac.kr
3University of New Brunswick, New Brunswick, Canada, pmahanti@unbsj.ca

Abstract: Social networks, religion and culture of human beings play a major role

in the day-to-day activities performed by each individual in group oriented

missions. The aggregation and inertia in the group are typically important to

achieve the goal. A leader being the most dominant and knowledgeable, with

leadership qualities, steers movements, thought processes, and actions of the

individuals of his/her group. However the psychology of each individual is unique.

This complex behavior is often observed in the software development projects,

where the cognitive attributes and contribution of programmer’s mind are some of

the important features to develop a project. This paper proposes a model for the

behavior of programmers (software developers) in a development project by

incorporating fuzzy logic as a tool. The implication of this model also assists in

gaining substantial information about the learning environment of the programmer

during the actual implementation and post session of the project and at the same

time also helps to evolve the concept of Virtual Project Leader (VPL) for similar

projects.

1. Introduction

Group dynamics play a major role during any development process involving

psychological and cognitive computing etc. [5]. Human beings, being social

animals, like to interact, neglect and communicate (i.e. act in various ways). They

do not have the tendency to be idle for long. They must do something or the other,

either physically or mentally. The way a group/team acts reflects the way it will

perform in the near future. Any software development project could also be

considered as a group activity. As a whole, their inertial movements (both physical

and behavioral) implicate and affect the software development project. The

1 Corresponding author email: hansy@cau.ac.kr

movement of group members also put a substantial impact on the resultant [4].

Mathematical models have been solicited to account age difference in hierarchical

navigation system, which is monitored mainly on age related differences [13].

Behavioral representation in synthetic forces is the modeling of human behavior as

it relates a particular mission. These models should incorporate the spectrum of

human biomechanical, physical and psychological parameters, responses and

interactions. All such attributes make human behavior highly complex non-linear

and adaptable systems. Recently soft computing approaches have been used to

address these complex issues [1]. Among the various soft computing paradigms,

the hybrid model (combination of neural learning and fuzzy logic) has been

already applied in manifold applications successfully. The objective of this paper

is to analyze the group dynamics as well as the programmer’s mental state behind

a software development project, which in turn enables to construct the inference

tree indicating the outcome of the project success.

2. Software Development Process and Related Research

The software development process mainly comprises of problem recognition,

analysis, feasibility study, design, coding, testing, implementation and

maintenance/post implementation. Different software engineering process models

have also been proposed to enhance the development process using linear

sequential model, prototyping model, RAD model, spiral/win-win spiral model,

incremental model, concurrent development model.

All these models claim different methodologies of the development process,

though the base remains the same. The models apply different views to facilitate

the same Software Development Life Cycle (SDLC) approach. Each of these

models requires their individual rations; time constraints, number of developers,

cost estimates etc. The process models describes the methodology of

implementation but is unable to precise the compatible process to shape the project

into success. There are a lot of factors, which monitor any software development

project e.g.: deadline constraints, exact output format expected from the

development team etc. As the software project is a team effort or a cumulative

group activity, a group behavior in the development phase is also functionally one

of the most important criterions in the light of behavior modeling of the team

members. Substantial works have been solicited relating group behavior of the

crowd [2][8]. Crowd is a composition of different people with different mental

behavior with/without a goal. Whereas a software development team is an

intelligent crowd dedicated towards a particular goal. Therefore broadly this

project visualizes a solution space considering typically a software development

scenario, where effort is different from project to project basis. In turn this exhibits

different mental state of software developers, synchronized with their physical

movements in the solution space. Any project of software development has the

skill scale marked as follows: Rigorous coding, creativity, analytical ability,

patience, endurance level, adaptation to correction (due to Megalomania,

Extraordinary sense of superiority complex), etc.

Psychology and behavioral analysis model through simulations has been

considered in many significant works [7][8]. The personal Software Process (PSP)

is based on the hypothesis that the performance of individual programmers can be

improved by applying sound techniques (such as receivers and effort estimation

methods) within a defined process (plan, design, code, review, compile, test, post

implementation). This entire spectrum depends on the behavior and mental state of

the developer. Complete software development life cycle has gained potential to

some extent. Ali and Abran [3] used fuzzy logic to measure the software project

similarity. To model complex human behavior several attempts have been

configured with the help of neuro-fuzzy systems [1]. In software development

project, human involvement or involvement of programmers is the basic

foundation block. The human i.e. programmer is goal specific, intelligent, may be

a good or bad learner, may reciprocate to the situation with different sense of

inertia individually. Thus analyzing the behavior of software programmer and its

mathematical psychology may lead to a pioneering model, which directly or

indirectly explains cognitive soft computing, behavioral study performance

measure, etc for a given project. The style of construction of programs is crucially

important and it depends on the programmer’s ability and thought process. In

cognitive psychology [6] thinking process models are often used to explain how

we reason about the world around us. Such a model can be seen as a simulation of

an object or an abstract concept. Similarly programmers, while creating a system,

create a number of mental models of a given system and try to interpret it in the

computer language through a program. Speed of the process for the creation of

such mental model of given system [12] may vary from programmer to

programmer, considering his/her experience and learning factor from the present

paradigm [9] or from past projects. Therefore, all the dynamic attributes of the

software developer, adept to change, also significantly tell about the success of the

project [10]. The effort here is made to incorporate soft computing, typically fuzzy

logic based algorithmic and mathematical model to simulate such behavior and

thus to reach to the successful or failed status of the project, depending on the

mental and behavioral state of the programmer.

3. Modeling Group Dynamics

This section describes a model of group dynamics eventually involved in a

standard software development scenario.

1. Problem recognition: Requires excellent analytical ability, healthy group

interactions and robust but correct documentation. Group movements would be

excessive in and out of the solution space. Relative velocity VP of individuals with

respect to other individuals in the team would change quite frequently. At the same

time, mental state feature vector is also of a high magnitude. VP = VP ± ϕP (ϕP =

considerable variance, VP = relative velocity of the problem recognition phase).

Relative velocity from now on would imply relative velocity of individuals in the

solution space.

2. Analysis: After the problem statement is prepared, each developer is expected

to understand the problem/work at hand. The task is analyzed, checked, revised for

feasibility, cost estimates, time estimates etc. Group movements in this phase

could vary from time to time. Relative velocity VA of employees could remain

constant, at a particular interval of time. Mental feature vector also varies,

depending upon individual skill set. VA = VA ± ϕA (ϕA = negligible deviation, VA =

relative velocity of the analysis phase). While at other intervals it could vary

heavily, VA =VA ± ϕA (ϕA = {ϕ1, ϕ2, ϕ3, ϕ4, ϕN}), where ϕA is a set of considerable

deviations.

Phase Metrics (probabilistic)
Metrics (optimal/near

optimal)

Problem

recognition
VP = VP ± ϕP @ varied “t” VP = VP ± ϕP @ regular “t”

Analysis
VA =VA ± ϕA @

Varied “t”, negligible ϕA

VA =VA ± ϕA @ varied “t”

ϕA→0, ϕA = {φ}

Feasibility study Same as analysis Same as analysis

Design
VD= VD ± ϕD @ irregular

“t”

VD= VD ± ϕD @ occassional

“t”

Coding
VC=K (constant) ± ϕC @

varied “t”, negligible ϕC

VC=K(Constant) ± ϕC @

regular “t”, ϕC→0

Testing

VT=K (constant) ± ϕT @

Varied “t”, negligible ϕT

ϕT>ϕC

VT=K (constant) ± ϕT @

Regular “t”, negligible ϕT

ϕT>ϕC

Implementation Same as coding Same as coding

Maintenance Same as testing Same as testing

Table 1. Observable velocities of individuals during software development

3. Feasibility Study: Feasibility study won’t deviate from the analysis dynamics.

4. Design: The design phase requires a very creative attitude of the developers at

hand. So a very low velocity variance is expected with exceptional instantaneous

increases. Developers should interact occasionally with each other in the solution

space. VD = VD ± ϕD (ϕD = considerable variance, VD = relative velocity of the

design phase)

5. Coding: Coding phase requires flat typing in of the codes in a programming

language based on the design parameters. Movements around the solution space

would be relatively very low, but dynamics of mental vectors of the programmers

are very high. VC = K (constant) ± ϕC (ϕC = negligible variance, VC = relative

velocity of the coding phase)

6. Testing: Testing requires/exhibits considerably few group movements (not

negligible). Team members actively interact with associated active agents, to inter-

relate their development so that premature errors could be sought out. VT = K

(constant) ±±±± ϕT (ϕT = negligible variance, ϕT > ϕC, VT = relative velocity of the

testing phase)

7. Implementation: It would correspond to the coding phase.

8. Post implementation/maintenance: It would correspond to the testing phase.

The different phases and the various related metrics are summarized in Table 1.

3.1 Ideal Group Inertia for Software Development

Ideal solution could not be achieved in the practical system. So, one optimal or

the most likely solution could be found out. A probable solution space may lead

towards an optimal solution. This project proposes the dynamic chart for the group

inertia related to software development. Let’s consider each of the velocities,

generated by individuals throughout the phases. Such a database would be huge

and divided along the repositories of phases and dimensions. Not only mere

positional velocities of individual but also accelerative velocities of project metrics

or the factors determining the cost estimates of a project are interesting areas of

exploration (Here velocity refers to any change in the measurable value of the

metrics). The end results would like to indicate such repositories of velocities,

behavioral and mental state displacement, calculate the resultant time interval

required, to complete a phase and predict whether they are heading towards

success, moderate success or failure.

Table 2. Cost drivers and their scalable velocities

3.2 Error Avoidance in Cost Estimates with Reference to COCOMO ‘81

A methodology is proposed for any avoidance of deviational variances from the

optimal estimates computed by a particular model. The intermediate version of the

COCOMO’81 database [14] is chosen as the basis for our study. The original

Velocity

notation
Description

RELY VRELY
Rate of change of RELY which might occur at later

stages of the development phase.

DATA VDATA
Rate of change of DATA under unprecedented

conditions.

CPLX VCPLX
Rate of change of CPLX due to unavoidable conditions

as erroneous designing of the system .

TIME VTIME
Rate of change of TIME due to latest customer

requirements or emergency.

STOR VSTOR
Rate of change of STOR due to unprecedented

breakdowns as power failures, virus attacks etc.

TURN VTURN Rate of change of TURN due to dynamic overheads.

ACAP VACAP
Rate of change of ACAP due to latest integrative

studies.

AEXP VAEXP Rate of change of AEXP due to latest accomplishments.

PCAP VPCAP
Rate of change of PCAP due to recent change in mental

state.

LEXP LEXP Rate of change of LEXP due to latest accomplishments.

MODP VMODP
Rate of change of MODP due to momentary popularity

of practices etc.

TOOL VTOOL Rate of change of TOOL due to unavoidable reasons.

SCED VSCED
Rate of change of SCED due to emergency or preponed

deadlines.

intermediate COCOMO’81 database contains 63 projects. Each project is

described by 17 attributes: the software size is measured in (Kilo Delivered Source

Instructions) KDSI; the project mode is defined as organic, semi-detached or

embedded and also 15 cost drivers which are generally related to the software

environment. Each cost driver is measured using a rating scale of six linguistic

values. The assignment of linguistic values to the cost drivers (or project

attributes) uses conventional quantization where the values are intervals. In this

study, we will consider 13 of the Cost Drivers and their possible scaleable

velocities as illustrated in Table 2. The scaleable velocities of the COCOMO’81

attributes are to be obtained from a regressed database of velocities divided along

the repositories of the genre of attributes. Such regressed values ought to have an

interval of error (ψ) as shown in Figure 1(V_BASE stands for Velocity data base).

• A large positive value of ψ will render the project unsuccessful.

• A moderate positive value of ψ will render the project moderately successful.

• A negligible positive/negative value of ψ will render the project successful.

Figure 1. Error factor from regressed database of velocities

3.3 Analysis Using the Proposed Model

The behavioral presentation in any model of SDLC is primarily monitored

through the block of attribute personnel. We experiment this model to represent

the mental state of the programmer/analyst capability. Suppose that the developer

in the group has successfully completed his assignment, and his contribution

influences the project inertia in the following ways, which could be considered as

fuzzy linguistic variables:

X1: Simple/standard behavior during coding

X2: Exhibited certain reservation towards leader’s instructions, not followed

SRS properly

X3: Took extra time, but completed the job, if any lapse, suppressed by group

X4: Got assistance of other members

X5: Completed the whole project in a light and daily schedule without extra

time assistance from others

X6: Completed exactly what has been asked for with pleasure

Assume that the developer has the expectation of the group inertia represented by

the possibility distribution

Ro = (0.9, 0.1, 0.7, 0.3, 0.1, 0.6)

We can see from this distribution that the developer expects a positive inertia, may

be he/she needs help from the group. If overall, the o/p inertia, for the other

members become,

E1 = 0.1/x1 + 0.8/x2 + 0.4/x3 + 0.7/x5

This inertia replicates although relatively strong, unambiguous and clear is rather

inconsistent, with the developer’s expectation about his group.

Let, S(M, r) = max[min(µ M(x), r(x))]

x ∈ Z

Corresponds to the received message with possibilistic expectations

S(M1, ro) = (0.1,0.1,0.4,0.1)=0.4.

Because this outcome is contrary to the developer’s real expectation, let us assume

by virtue of human behavior, he wants to add some distortion.

As equation, µ(x) = µSµ(x)

Such that it likely, µ1’ = 0.4/x1 + 0.9/x2 + 0.7/x3 + 0.4/x

The already proposed model [11] as such consists of three sub-modules namely

activity, productivity and knowledge model. Here, we can map knowledge model

into attribute personnel, which clearly demonstrates uncertainty:

ϕ

ϕϕϕ

〉

〈−−×=

ij

bijij

b

bEe
ij

,0

(K W (L),ij jij

where, Lij(ϕϕϕϕ) = quantity of gains to knowledge of a developer I by executing a

primitive activity of activity j which has a knowledge level ‘ϕ’

bij = developer i’s knowledge level about activity j.

Eij = developer i’s downward rate of gain to knowledge by executing activity j.

ϕϕϕϕ : Required knowledge level to execute the primary activity of activity j.

wj : Total amount of activity j.

Kij : Maximum quantity of gains to knowledge of developer I by executing

activity j.

The K-model presents characteristics of a developer, his willingness to learn,

transparency of behavior, sustainability to deadline, abiding to project authority,

etc. Considering these aspects an additional complication is introduced when we

consider that the software developer may also introduce distortion in the message

because with the inconsistency with the expectation, Let

S(M, r) = max[min(µM(x), r(x)] (1)

x ∈ X

Correspond the consistency of the receive message which the receiver actually

hears as M’, where (µM(x) = (µ
S

M(x)) (2)

for each, x∈X.

The less consistent M with the expectation the less M’ resembles M. Since the

receiver will be modifying his/her expectations to perform, the new possibilistic

expectation structure is given by: r1(x) = min[ro
1-S

 (x), µM’(x)] (3)

for each x∈ X

Now as measured by (1) the consistency is

s(M1,ro) = max[0.1, 0.1, 0.4, 0.1) = 0.4

Since the message is contrary to the developer’s expectation; let us assume that he

introduces some distortion as we mentioned in, such that the message he hears it:

M1’ = 0.1/x1 + 0.9/x2 + 0.7/x3 + 0.4/x5

Based on this message he modifies his expectation such that

r1(x) = min [ro
6
(x), µM1’(x)]

for each x∈ X or r1 = 0.4x1 + 0.25/x2 + 0.7/x3 + 0.25/x5

The developer has then experienced greatly diminished negation and his

expectation of a simple derisive laughter of the group has given up all hope of the

possibility of joy and confidence. Suppose now that in disbelief, the programmer

asks the project leader to repeat the judgment and receives the following message,

M = 0.9/x2 + 0.4/x5

This message is stronger, clearer and less general than the first answer. It’s

consistency to the developer’s new expectation is (of his performance or

contribution), S(M2, r1) = 0.25. Thus the message is highly contrary even to the

revised expectation of the developer. So let’s suppose that he distorts the message

such that he hears, M2’ = 0.97/x2 + 0.8/x5. His surprise has then diminished the

clarity of the message heard and has lead him to exaggerate the degree to which he

believes that the project leader has not responded well, he responded with derisive

laughter. Now let us suppose that the response which the developer makes the

following characteristics from the following set y, which is mapped with fuzzy

linguistic variables as well:

y1 = Happily completed, under the guideline of project leader

y2 = Not happy at the end of the project

y3 = Surprised about his own good/bad performance

y4 = Anger/frustration for not to contribute

y5 = Patient and confident but less happy, about the group support

y6 = Impatient and asks to change the group

y7 = Ability to learn more

Let the fuzzy relation R∈y×x represent the degree to which the programmer

plans to respond to a given signal x with a response having the attribute y. Their

relationship is given in Table 3

 X1 X2 X3 X4 X5 X6

Y1 0.9 0 0.2 0 0 1

Y2 0 0.9 0.1 0.2 1 0

Y3 0.1 0.9 0.2 0.9 1 0.3

Y4 0 0.5 0 0.6 0.7 0

Y5 0.1 0 0.9 0 0 0.5

Y6 0 0.3 0.2 0.3 0.4 0

Y7 0.9 0 0.9 0.3 0 1

Table 3. Relationship between programmer plans to a given signal

µA(y) = max [min (µr (y, x), µM(x)], x ∈X

Based on this we can now calculate the response which the developer will make to

the message M2’: A = Ro M2’ = 0.9/y2 + 0.9/y3 + 0.7/y4 +0.4/y6. The developer’s

response therefore will have the characteristics of a great deal of frustration and

surprise, a large degree of anger and some impatience.

4. A Decision Tree for Steering a Project to Success

A decision tree as illustrated in Figure 2 is proposed to help in minimizing the ‘ψ’

value. Special nodes namely ARNs (Administrative Root Nodes) are employed,

which govern the weight factors (depicted in Table 4), assigned to their respective

child nodes. Weights assigned to branches get incremented by a unit value if a

momentary increase in the velocity refresh rate is experienced by a particular ARN

node. The responsibility of the ARN now would be to constantly recommend

velocities as required so that the ‘ψ’ value could be kept a minimum. As the

prototype of the project is meant for the development of Virtual Project Lead,

therefore, the level of decision or D-Tree based on the behavior and mental state of

individual members can be configured. Actually, the cumulative effect of such

attribute affects the whole project.

Table 4. Conditions to be maintained for avoiding erroneous deviation

The MARN (Master administrative Root Node), decides priorities of weights in a

function COMP (ω, PHASE, n (ω)), ω is a set of weights sent to COMP for

comparison. PHASE refers to a particular phase in SDLC.

Here, COMP = (A, PHASEX, 4) =A1<A2<A3<A4

The cardinality factor n(ω) refers to the fact that the proposed model also

welcomes any further increase in attribute genres in the COCOMO’ 81 models.

Figure 2. Decision tree approach

5. Conclusions and Future Research

In practice nowadays the IT industry largely follows, object-oriented paradigm,

irrespective of the status of the project. In all the cases, programming is the basic

implementation of any SDLC, which again depends on individual psychology of

the programmer. This paper presented an analytical method to model and analyze

such behavior in tune of project leader’s dynamics, group dynamics etc. and thus

could extrapolate the possibility of success or failure of the project. If the project

gets similar attributes in the future, then it may be feasible to apply the acquired

behavioral attributes to execute the project. In this context the concept of VPL can

be introduced for further development.

Concerned Cocomo’81 attributes Maintainable conditions
Attributes Product VDATA<VCPLX<VRELY

Attributes Material VSTORE<VTURN<VTIME

Attributes Personnel VACAP<VPCAP<VAEXP<VLEXP

Attributes Project VTOOL<VMODP<VSCED

Acknowledgements

This research was supported by the MIC (Ministry of Information and

Communication), Korea, under the Chung-Ang University HNRC-ITRC (Home

Network Research Center) support program supervised by the IITA (Institute of

Information Technology Assessment).

References

[1] Gary R., George and Cardullo Frank, Research paper on, Application of Neuro Fuzzy

System to Behavioral Representation in Computer Generated Forces,

http://citeseer.ist.psu.edu/george99application.html , 1999.

[2] Helbing D., A Mathematical Model for the behavior of Pedestrians, Behavioral

Science, 36, 4, pp. 298-310, 1991.

[3] Ali Idri, Alain Abran, A Fuzzy Logic Based Set of Measures for Software Project

Similarity: Validation and Possible Improvements, 7th IEEE International Software

Metrics Symposium, IEEE Computer Society, pp. 85-97, 2001.

[4] Gray, W. D., Schoelles, M. J. and & Fu W.T., Modeling a Continuous Dynamic Task,

Proceedings of the 3rd International Conference on Cognitive Modeling pp. 156-168,

2000.

[5] Kurosu, K., Furuya, T., Nakamura, M. Utsunomiya, H. and Soeda, M., Dynamic and

Fuzzy Control of a Group, IEEE International Workshop on Emerging Technologies

and Factory Automation, pp. 572-577, 1992.

[6] M. W. Eysenck, M.T. Keane, Cognitive Psychology, A Student’s Rawbook, 1990.

[7] Maurizio Morisio, How to Study Individual Programmers, In Proceedings of 22nd

International Conference on Software Engineering, Ireland,

http://citeseer.ist.psu.edu/684393.html

[8] Musse S.R., Thalman D, Computer Animation and Simulations, Proceedings

Eurographics workshop, Budapest Springer Verlag, pp. 39-51, 1997.

[9] Noriko Hanakawa et al., A Software Development Process Simulation Model based

on Dynamic changes in Developer’s Knowledge Structure”, in International Journal

of the Annals of S/w Engineering. Vol. 14, pp. 383-406, Oct. 2002.

[10] Noriko Hanakawa, Ken-ichi Matsumoto, Katsuro Inoue, and Koji Torii, A Software

Development Simulation Model based on Dynamic Changes in Developer’s

Knowledge Structure, International Workshop on Software Process Simulation

Modeling, England, 2000.

[11] Noriko Hanakawa, Syuji Morisaki and Kenichi Matsumoto, Application of Learning

Curve Based Simulation Model for Software Development to Industry, In Proc. 20th

International Conference on Software Engineering, pp. 350 – 359, 1998.

[12] Moström, J. E. and D. Carr, Programming Paradigms and Program Comprehension,

Proceedings of the 10th Annual Workshop of the Psychology of Programmers Interest

Group, UK, pp. 117-127, 1998.

[13] Zaphiris, P., Kurniawan, S.H., Ellis, R.D. Mathematical Formulation of Age Related

Differences in Mouse Movement Tasks. In C. Stephanidis (Ed.), Universal Access in

HCI, 2003, Lawrence Erlbaum, USA, pp. 917-921. 2003.

[14] Boehm B., Software Engineering Economics. Prentice Hall, 1981.

