Skip to main content

Discriminant versus Strong Rule Sets

  • Conference paper
Intelligent Information Processing and Web Mining

Part of the book series: Advances in Soft Computing ((AINSC,volume 31))

  • 863 Accesses

Abstract

The main objective of our research was to compare two completely different approaches to rule induction. In the first approach, represented by the LEM2 rule induction algorithm, induced rules are discriminant, i.e., every concept is completely described and rules are consistent. In the second approach, represented by the IRIM rule induction algorithm, a few strong and simple rules are induced. These rules do not necessarily completely describe concepts and, in general, are inconsistent. Though LEM2 frequently outperforms IRIM, the difference in performance is, statistically, insignificant. Thus IRIM, inducing a few strong but simple rules is a new and interesting addition to the LERS data mining system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chmielewski, M. R. and Grzymala-Busse, J. W. Global discretization of continuous attributes as preprocessing for machine learning. Int. Journal of Approximate Reasoning 15 (1996), 319–331.

    Article  Google Scholar 

  2. Grzymala-Busse, J. W.: LERS—A system for learning from examples based on rough sets. In Intelligent Decision Support. Handbook of Applications and Advances of the Rough Sets Theory. Slowinski, R. (ed.), Kluwer Academic Publishers, Dordrecht, Boston, London (1992) 3–18.

    Google Scholar 

  3. Grzymala-Busse, J. W.: A new version of the rule induction system LERS. Fundamenta Informaticae 31 (1997), 27–39.

    MATH  Google Scholar 

  4. Grzymala-Busse, J. W., Hamilton, J. and Hippe, Z. S.. Diagnosis of melanoma using IRIM, a data mining system. Proceedings of the ICAISC’2004, the Seventh International Conference on Artificial Intelligence and Soft Computing, Zakopane, Poland, June 7–11, 2004. Lecture Notes in Artificial Intelligence 3070, Springer-Verlag 2004, 996–1001.

    Google Scholar 

  5. Grzymala-Busse, J.W. and Wang A. Y.: Modified algorithms LEM1 and LEM2 for rule induction from data with missing attribute values. Proc. of the Fifth International Workshop on Rough Sets and Soft Computing (RSSC’97) at the Third Joint Conference on Information Sciences (JCIS’97), Research Triangle Park, NC, March 2–5, 1997, 69–72.

    Google Scholar 

  6. Holte R. C.:. Very simple classification rules perform well on most commonly used datasets. Machine Learning 11 (1993) 63–90.

    Article  MATH  Google Scholar 

  7. Michalski, R. S., Mozetic, I., Hong, J. and Lavrac, N.: The AQ15 Inductive Learning System: An Overview and Experiments. Intelligent System Group, University of Illinois at Urbana-Champaign, ISG 86–20, 1986.

    Google Scholar 

  8. Pawlak, Z.: Rough Sets. International Journal of Computer and Information Sciences 11 (1982) 341–356.

    Article  MATH  MathSciNet  Google Scholar 

  9. Quinlan, J. R.: C4.5: Programs for Machine Learning, Morgan Kaufmann Publishers, San Mateo, CA (1988).

    Google Scholar 

  10. Stefanowski, J.: Algorithms of Decision Rule Induction in Data Mining (in Polish). Poznan University of Technology Press, Poznan, Poland (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Grzymala-Busse, J.W., Grzymala-Busse, W.J., Hamilton, J. (2005). Discriminant versus Strong Rule Sets. In: Kłopotek, M.A., Wierzchoń, S.T., Trojanowski, K. (eds) Intelligent Information Processing and Web Mining. Advances in Soft Computing, vol 31. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-32392-9_8

Download citation

  • DOI: https://doi.org/10.1007/3-540-32392-9_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25056-2

  • Online ISBN: 978-3-540-32392-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics