Abstract
The main objective of our research was to compare two completely different approaches to rule induction. In the first approach, represented by the LEM2 rule induction algorithm, induced rules are discriminant, i.e., every concept is completely described and rules are consistent. In the second approach, represented by the IRIM rule induction algorithm, a few strong and simple rules are induced. These rules do not necessarily completely describe concepts and, in general, are inconsistent. Though LEM2 frequently outperforms IRIM, the difference in performance is, statistically, insignificant. Thus IRIM, inducing a few strong but simple rules is a new and interesting addition to the LERS data mining system.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Chmielewski, M. R. and Grzymala-Busse, J. W. Global discretization of continuous attributes as preprocessing for machine learning. Int. Journal of Approximate Reasoning 15 (1996), 319–331.
Grzymala-Busse, J. W.: LERS—A system for learning from examples based on rough sets. In Intelligent Decision Support. Handbook of Applications and Advances of the Rough Sets Theory. Slowinski, R. (ed.), Kluwer Academic Publishers, Dordrecht, Boston, London (1992) 3–18.
Grzymala-Busse, J. W.: A new version of the rule induction system LERS. Fundamenta Informaticae 31 (1997), 27–39.
Grzymala-Busse, J. W., Hamilton, J. and Hippe, Z. S.. Diagnosis of melanoma using IRIM, a data mining system. Proceedings of the ICAISC’2004, the Seventh International Conference on Artificial Intelligence and Soft Computing, Zakopane, Poland, June 7–11, 2004. Lecture Notes in Artificial Intelligence 3070, Springer-Verlag 2004, 996–1001.
Grzymala-Busse, J.W. and Wang A. Y.: Modified algorithms LEM1 and LEM2 for rule induction from data with missing attribute values. Proc. of the Fifth International Workshop on Rough Sets and Soft Computing (RSSC’97) at the Third Joint Conference on Information Sciences (JCIS’97), Research Triangle Park, NC, March 2–5, 1997, 69–72.
Holte R. C.:. Very simple classification rules perform well on most commonly used datasets. Machine Learning 11 (1993) 63–90.
Michalski, R. S., Mozetic, I., Hong, J. and Lavrac, N.: The AQ15 Inductive Learning System: An Overview and Experiments. Intelligent System Group, University of Illinois at Urbana-Champaign, ISG 86–20, 1986.
Pawlak, Z.: Rough Sets. International Journal of Computer and Information Sciences 11 (1982) 341–356.
Quinlan, J. R.: C4.5: Programs for Machine Learning, Morgan Kaufmann Publishers, San Mateo, CA (1988).
Stefanowski, J.: Algorithms of Decision Rule Induction in Data Mining (in Polish). Poznan University of Technology Press, Poznan, Poland (2001).
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Grzymala-Busse, J.W., Grzymala-Busse, W.J., Hamilton, J. (2005). Discriminant versus Strong Rule Sets. In: Kłopotek, M.A., Wierzchoń, S.T., Trojanowski, K. (eds) Intelligent Information Processing and Web Mining. Advances in Soft Computing, vol 31. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-32392-9_8
Download citation
DOI: https://doi.org/10.1007/3-540-32392-9_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-25056-2
Online ISBN: 978-3-540-32392-1
eBook Packages: EngineeringEngineering (R0)