Skip to main content

Tableau Method with Free Variables for Intuitionistic Logic

  • Conference paper
Intelligent Information Processing and Web Mining

Part of the book series: Advances in Soft Computing ((AINSC,volume 35))

Abstract

In this paper, we address proof search in tableaux with free variables for intuitionistic logic by introducing the notion of an admissible substitution into a quantifier-free calculus. Admissibility of a substitution is determined by the quanti fier structure of given formulae and by dependencies between variables in the substitution. With this notion of admissibility, we avoid the need for both Skolemisation and checking different possible orders of quantifier rule applications. We demonstrate our approach on a series of examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. B. Beckert. Depth-.rst proof search without backtracking for free-variable clausal tableaux. Journal of Symbolic Computation, 36:117–138, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  2. 2. K. Broda. The relationship between semantic tableau and resolution theorem proving. In Proc. of Workshop on Logic, Debrecen, Hungary, 1980.

    Google Scholar 

  3. 3. D. Gabbay. Labelled deductive systems. Oxford university press, 1996.

    Google Scholar 

  4. 4. M. Giese. Incremental closure of free variable tableaux. In Proc. IJCAR'01, vol. 2083 of LNCS, pp. 545–560, 2001.

    MathSciNet  Google Scholar 

  5. 5. R. Hähnle. Tableaux and related methods. In A. Robinson and A. Voronkov, editors, Handbook of Automated Reasoning, vol. I, chapter 3, pp. 101–178. Elsevier, 2001.

    Google Scholar 

  6. 6. B. Konev and T. Jebelean. Solution lifting method for handling metavariables in the THEOREMA system. Zapiski Nauchnykh Seminarov POMI, 293:94–117, 2002. English translation: Journal of Mathematical Sciences, Springer/Kluwer/Plenum, to appear.

    Google Scholar 

  7. 7. C. Kreitz and J. Otten. Connection-based theorem proving in classical and non-classical logics. J. UCS, 5(3):88–112, 1999.

    MATH  MathSciNet  Google Scholar 

  8. 8. A. Lyaletski, K. Vershinin, A. Degtyarev, and A. Paskevich. System for automated deduction (SAD): Linguistic and deductive peculiarities. In Proc. of Intelligent Information Systems 2002, Advances in Soft Computing, pp. 413– 422. Physica/Springer Verlag, 2002.

    Google Scholar 

  9. 9. A. V. Lyaletski. Gentzen calculi and admissible substitutions. In Actes Preliminaieres, du Symposium Franco-Sovietique “Informatika-91”, pp. 99–111, Grenoble, France, 1991.

    Google Scholar 

  10. 10. G. Mints. Resolution strategies for the intuitionistic logic. In Constraint Programming, pp. 289–311. Springer, Berlin, Heidelberg, 1994.

    Google Scholar 

  11. 11. J. Otten. ileanTAP: An intuitionistic theorem prover. In Proc. TABLEAUX'97, vol. 1227 of LNCS, pp. 307–312, 1997.

    Google Scholar 

  12. 12. J. Otten and C. Kreitz. A connection based proof method for intuitionistic logic. In Proc. TABLEAUX'95, vol. 918 of LNCS, pp. 122–137, 1995.

    Google Scholar 

  13. 13. J. Otten and C. Kreitz. A uniform proof procedure for classical and nonclassical logics. In KI-96, vol. 1137 of LNCS, pp. 307–319, 1996.

    Google Scholar 

  14. 14. S. Reeves. Semantic tableaux as framework for automated theorem-proving. In C. S. Mellish and J. Hallam, editors, Proc. AISB-87, pp. 125–139, 1987.

    Google Scholar 

  15. 15. J. A. Robinson. A machine oriented logic based on the resolution principle. J. Assoc. Comput. Mach, 12:23–41, 1965.

    MATH  MathSciNet  Google Scholar 

  16. 16. S. Schmitt and C. Kreitz. Deleting redundancy in proof reconstruction. In Proc. TABLEAUX'98, vol. 1397 of LNCS, pp. 262–276, 1998.

    Google Scholar 

  17. 17. A. Shankar. Proof search in the intuitionistic sequent calculus. In Proc. CADE'92, vol. 607 of LNCS, pp. 522–536, 1992.

    Google Scholar 

  18. 18. T. Tammet. A resolution theorem prover for intuitionistic logic. In Proc. CADE-13, vol. 1104 of LNCS, pp. 2–16, 1996.

    Google Scholar 

  19. 19. A. Voronkov. Proof search in intuitionistic logic based on constraint satisfaction. In Proc. TABLEAUX'96, vol. 1071 of LNCS, pp. 312–329, 1996.

    Google Scholar 

  20. 20. A. Waaler and L. Wallen. Tableaux for intuitionistic logics. In M. D'Agostino, D. Gabbay, R. Hähnle, and J. Posegga, editors, Handbook of Tableau Methods, pp. 255–296. Kluwer, Dordrecht, 1999.

    Google Scholar 

  21. 21. L. Wallen. Automated Deduction in Nonclassical Logics. MIT Press: Cambridge, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Konev, B., Lyaletski, A. (2006). Tableau Method with Free Variables for Intuitionistic Logic. In: Kłopotek, M.A., Wierzchoń, S.T., Trojanowski, K. (eds) Intelligent Information Processing and Web Mining. Advances in Soft Computing, vol 35. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-33521-8_15

Download citation

  • DOI: https://doi.org/10.1007/3-540-33521-8_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33520-7

  • Online ISBN: 978-3-540-33521-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics