Skip to main content

How Can We Simulate Something As Complex As the Immune System?

  • Conference paper
Intelligent Information Processing and Web Mining

Part of the book series: Advances in Soft Computing ((AINSC,volume 35))

  • 595 Accesses

Abstract

We first establish the potential usefulness of simulation in immunological research, and then explore some of the problems that are preventing its widespread use. We suggest solutions for each of these problems, and illustrate both problems and solutions with an example from our own research – an experiment that tests a novel theory of immunological memory, in which our simulation effectively closed the experiment-theorise loop.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. E. Ahmed and A. H. Hashish, On modelling of immune memory mechanisms (sic), Theory Biosci. 122 (2003), 339–342.

    Article  Google Scholar 

  2. 2. R. Antia, V. V. Ganusov, and R. Ahmed, The role of models in understanding CD8 + t-cell memory, Nature Review of Immunology 5 (2005), 101–111.

    Article  Google Scholar 

  3. 3. N. L. Bernasconi, E. Traggiai, and A. Lanzavecchia, Maintenance of serological memory by polyclonal activation of human memory b-cells, Science 298 (2002), 2199–2202.

    Article  Google Scholar 

  4. 4. F. M. Burnet, The clonal selection theory of acquired immunity, Cambridge University Press, 1959.

    Google Scholar 

  5. 5. F. Castiglione, V Selitser, and Z. Agur, The effect of drug schedule on hypersensitive reactions: a study with a cellular automata model of the immune system, Cancer Modelling and Simulation (Luigi Preziosi, ed.), CRC Press, LLC, (UK), 2003.

    Google Scholar 

  6. 6. J.D. Farmer, N. Packard, and A. Perelson, The immune system, adaptation and machine learning, Physica D 22 (1986), 187–204.

    Article  MathSciNet  Google Scholar 

  7. 7. S. M. Garrett, A paratope is not an epitope: Implications for immune networks and clonal selection, 2nd International Conference in Arti.cial Immune Systems (Edinburgh), Springer-Verlag, September 1–3 2003, pp. 217–228.

    Google Scholar 

  8. 8. C. Jacob, J. Litorco, and L. Lee, Immunity through swarms: Agent-based simulations of the human immune system, 3rd International Conference in Arti- ficial Immune Systems (ICARIS-2004) (Catania, Italy), September 1–3 2004, pp. 477–489.

    Google Scholar 

  9. 9. R.D King, S.M. Garrett, and G.M. Coghill, On the use of qualitative reasoning to simulate and identify metabolic pathways, Bioinformatics 21 (2005), 2017– 2026.

    Article  Google Scholar 

  10. 10. S. H. Kleinstein, Y. Louzoun, and M. J. Shlomchik, Estimating hypermutation rates from clonal tree data, The Journal of Immunology 171 (2003), no. 9, 4639–4649.

    Google Scholar 

  11. 11. S. H. Kleinstein and P. E. Seiden, Simulating the immune system, Computing in Science and Engineering (2000), 69–77.

    Google Scholar 

  12. 12. M. Meier-Schellersheim and G. Mack, Simmune, a tool for simulating and analyzing immune system behavior., 1999, http://www-library.desy.de/s.

    Google Scholar 

  13. 13. A. Perelson, Modelling viral and immune system dynamics, Nature 2 (2002), 28–36.

    Google Scholar 

  14. 14. M. Robbins and S. M. Garrett, Evaluating theories of immunological memory using large-scale simulations, 4th International Conference in Artificial Immune Systems (ICARIS-2005) (Ban., Calgary, Canada), August 14–17 2005, pp. 136– 146.

    Google Scholar 

  15. 15. D. J. Smith, S. Forrest, D. H. Ackley, and A. S. Perelson, Variable efficacy of repeated annual influenza vaccination, PNAS 96 (1999), 14001–14006.

    Article  Google Scholar 

  16. 16. W. Wilson and S. M. Garrett, Modelling immune memory for prediction and computation, 3rd International Conference on Artificial Immune Systems (ICARIS-04), Springer-Verlag, 2004, pp. 343–352.

    Google Scholar 

  17. 17. S. Wolfram, A new kind of science, Wolfram Media Incorporated, 2002.

    Google Scholar 

  18. 18. A. Yates, C.C.W Chan, R.E. Callard, A.J.T. George, and J. Stark, An approach to modelling in immunology, Briefings in Bioinformatics 2 (2001), 245–257.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Garrett, S., Robbins, M. (2006). How Can We Simulate Something As Complex As the Immune System?. In: Kłopotek, M.A., Wierzchoń, S.T., Trojanowski, K. (eds) Intelligent Information Processing and Web Mining. Advances in Soft Computing, vol 35. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-33521-8_50

Download citation

  • DOI: https://doi.org/10.1007/3-540-33521-8_50

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33520-7

  • Online ISBN: 978-3-540-33521-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics