Skip to main content

Impacts of Uncertainty and Increasing Returns on Sustainable Energy Development and Climate Change: A Stochastic Optimization Approach

  • Conference paper
Coping with Uncertainty

Part of the book series: Lecture Notes in Economics and Mathematical Systems ((LNE,volume 581))

  • 867 Accesses

Abstract

In this article we discuss a stochastic optimization model used for evaluation of long-term energy development. The model includes the following features:

  1. 1.

    Increasing returns to scale for the costs of new technologies with uncertain learning rates;

  2. 2.

    Uncertain costs of all technologies and cost/quantities for energy sources, both renewable and depletable;

  3. 3.

    Uncertainties in future energy demands and their volatilities;

  4. 4.

    Uncertain environmental constrains;

  5. 5.

    Clusters of linked technologies that induced technological advances.

In particular, this allows us to identify robust dynamic technology portfolios, which supply (in a sense) potential energy demand, while minimizing adjusted to risks expected costs together with investment and environmental risks. Formally, the discussed problem involves a non-convex, large-scale stochastic optimization model requiring special global optimization technique which takes advantage of the specific structure of the problem.

This article primarily concentrated with main motivations, critical importance of non-convexity (increasing returns) and explicit treatment of uncertainty by using stochastic optimization approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bankes, S.C. (1993) Exploratory Modeling and Policy Analysis, RAND/RP-211, Santa Monica, CA, USA.

    Google Scholar 

  2. Birge, J., Louveaux, F. (1997) Introduction to Stochastic Programming. Springer-Verlag, New York, USA.

    MATH  Google Scholar 

  3. Czyzyk, J., Mehrotra, S., Wagner, M., Wright, S. (1997) PCx User Guide (Version 1.1), Technical Report, OTC 96/01, http://wwwunix.mcs.anl.gov/otc/Tools/PCx/doc/PCx-user.ps.

    Google Scholar 

  4. Ermoliev, Y., Norkin, V. (1997) On Nonsmooth Problems of Stochastic Systems Optimization, European Journal of Operational Research, 101:230–244.

    Article  MATH  Google Scholar 

  5. Ermoliev, Y., Norkin, V. (1998) Monte Carlo Optimization and Path Dependent Nonstationary Laws of Large Numbers, IR-98-009, International Institute for Applied Systems Analysis, Laxenburg, Austria.

    Google Scholar 

  6. Ermoliev, Y., Wets, R.J.-B. (1988) Numerical Techniques for Stochastic Optimization, Springer-Verlag, Berlin, Germany.

    MATH  Google Scholar 

  7. Foray, D., Grübler, A. (1990) Morphological analysis, diffusion and lockout of technologies: Ferrous casting in France and Germany, Research Policy, 19(6):535–550.

    Article  Google Scholar 

  8. Golodnikov, A., Gritsevskyi, A., Messner, S. (1995) A Stochastic Version of the Dynamic Linear Programming Model MESSAGE III, WP-95-094, International Institute for Applied Systems Analysis, Laxenburg, Austria.

    Google Scholar 

  9. Grübler, A., Gritsevskyi, A. (1998) A model of endogenized technological change through uncertain returns on learning, http://www.iiasa.ac.at/Research/TNT/WEB/Publications/

    Google Scholar 

  10. Gritsevskyi, A., Ermoliev, Y. (1999) An Energy Model Incorporating Technological Uncertainty, Increasing Returns and Economic and Environmental Risks. Proceedings of International Association for Energy Economics 1999 European Energy Conference “Technological progress and the energy challenges”, Paris, France.

    Google Scholar 

  11. Gritsevskyi, A., Nakićenović, N. (2002) Modeling Uncertainty of Induced Technological Change, pp.251–279, in A. Grübler, N. Nakićenović and W.D. Nordhaus, eds, Technological Change and the Environment, Resources for the Future and International Institute for Applied Systems Analysis, published by Resources for the Future, Washington, United States of America.

    Google Scholar 

  12. Grübler, A., Gritsevskyi, A. (2002) A Model of Endogenized Technological Change through Uncertain Returns on Innovation, pp.280–319, in A. Grübler, N. Nakićenović and W.D. Nordhaus, eds, Technological Change and the Environment, Resources for the Future and International Institute for Applied Systems Analysis, published by Resources for the Future, Washington, United States of America.

    Google Scholar 

  13. Grübler, A. (1998) Technology and Global Change, Cambridge University Press, Cambridge, UK.

    Google Scholar 

  14. Grübler, A., Messner, S. (1996) Technological Uncertainty, in N. Nakićenović, W.D. Nordhaus, R. Richels, and F.L. Toth, eds, Climate Change: Integrating Science, Economics, and Policy, CP-96-001, International Institute for Applied Systems Analysis, Laxenburg, Austria.

    Google Scholar 

  15. Grübler, A., Messner, S. (1998) Technological change and the timing of mitigation measures, Energy Economics, 20:495–512.

    Article  Google Scholar 

  16. Horst, R., Pardalos, P.M., eds (1995) Handbook of Global Optimization, Kluwer, Dordrecht, Netherlands.

    MATH  Google Scholar 

  17. IPCC (Intergovernmental Panel on Climate Change) (2000) Emissions Scenarios, Cambridge University Press, Cambridge, UK.

    Google Scholar 

  18. Kall, P., Ruszczynski A. and Frauendorfer K. (1987) Approximation techniques in stochastic programming, in Ermoliev Y.M. and Wets R. (eds.) Numerical Methods for Stochastic Optimization, Springer-Verlag.

    Google Scholar 

  19. Lempert, R.J., Schlesinger, M.E., Bankes, S.C. (1996) When we don’t know the costs or the benefits: Adaptive strategies for abating climate change, Climatic Change, 33(2):235–274.

    Article  Google Scholar 

  20. Marti K. (2005) Stochastic Optimization Methods, Springer, Berlin, Germany.

    MATH  Google Scholar 

  21. Markowitz, H. (1959) Portfolio Selection, Wiley, New York, NY, USA.

    Google Scholar 

  22. Messner, S. (1995) Endogenized Technological Learning in an Energy Systems Model, WP-95-114, International Institute for Applied Systems Analysis, Laxenburg, Austria.

    Google Scholar 

  23. Messner, S. (1997) Endogenized technological learning in an energy systems model, Journal of Evolutionary Economics, 7(3):291–313.

    Article  Google Scholar 

  24. Messner, S., and Strubegger, M. (1991) Part A: User’s Guide to CO2DB: The IIASA CO2 Technology Data Bank-Version 1.0, WP-91-031, International Institute for Applied Systems Analysis, Laxenburg, Austria.

    Google Scholar 

  25. Messner, S., Golodnikov, A., Gritsevskyi, A. (1996) A stochastic version of the dynamic linear programming model MESSAGE III, Energy, 21(9):775–784.

    Article  Google Scholar 

  26. Nakićenović, N. (1996) Technological change and learning, in N. Nakićenović, W.D. Nordhaus, R. Richels, and F.L. Toth, eds, Climate Change: Integrating Science, Economics, and Policy, CP-96-001, International Institute for Applied Systems Analysis, Laxenburg, Austria.

    Google Scholar 

  27. Nakićenović, N. (1997) Technological Change as a Learning Process, paperpresented at the Technological Meeting’ 97, International Institute for Applied Systems Analysis, Laxenburg, Austria.

    Google Scholar 

  28. Nakićenović, N., Grübler, A., Ishitani, H., Johansson, T., Marland, G., Moreira, J.R., Rogner, H.-H. (1996) Energy primer, in Climate Change 1995: Impacts, Adaptations and Mitigation of Climate Change: Scientific-Technical Analysis, Contribution of Working Group II to the Second Assessment Report of the IPCC, Cambridge University Press, Cambridge, UK, pp. 75–92.

    Google Scholar 

  29. Nakićenović, N., Grübler, A., McDonald, A., eds. (1998) Global Energy Perspectives, Cambridge University Press, Cambridge, UK.

    Google Scholar 

  30. Norkin V. I., Pflug G. C., Ruszczynski A. (1996) A Branch and Bound Method for Stochastic Global Optimization, Mathematical Programming, 83:425–450.

    Article  MathSciNet  Google Scholar 

  31. Pinter, J. (1996) Global Optimization in Action, Kluwer, Dordrecht, Netherlands.

    MATH  Google Scholar 

  32. Robalino, D., Lempert, R. (2000) Carrots and sticks for new technology: Crafting greenhouse gas reduction policies for a heterogeneous and uncertain world, Integrated Assessment, 1(1):1–19.

    Article  Google Scholar 

  33. Rogner, H.-H. (1997) An assessment of world hydrocarbon resources, Annual Review of Energy and the Environment, 22:217–262.

    Article  Google Scholar 

  34. Strubegger, M., Reitgruber, I. (1995) Statistical Analysis of Investment Costs for Power Generation Technologies, WP-95-109, International Institute for Applied Systems Analysis, Laxenburg, Austria.

    Google Scholar 

  35. Wright, S.J. (1996) Primal-DualInterior-Point Methods, SIAM, London, UK.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gritsevskyi, A., Rogner, H.H. (2006). Impacts of Uncertainty and Increasing Returns on Sustainable Energy Development and Climate Change: A Stochastic Optimization Approach. In: Coping with Uncertainty. Lecture Notes in Economics and Mathematical Systems, vol 581. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-35262-7_12

Download citation

Publish with us

Policies and ethics