Abstract
Freek Wiedijk proposed the well-known theorem about the irrationality of √2 as a case study and used this theorem for a comparison of fifteen (interactive) theorem proving systems, which were asked to present their solution (see [48]).
This represents an important shift of emphasis in the field of automated deduction away from the somehow artificial problems of the past as represented, for example, in the test set of the TPTP library [45] back to real mathematical challenges.
In this paper we present an overview of the Ωmega system as far as it is relevant for the purpose of this paper and show the development of a proof for this theorem.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
S. Allen, R. Constable, R. Eaton, C. Kreitz, and L. Lorigo. The Nuprl open logical environment. In McAllester [29].
P. Andrews, M. Bishop, S. Issar, D. Nesmith, F. Pfenning, and H. Xi. TPS: A theorem proving system for classical type theory. Journal of Automated Reasoning, 16(3):321–353, 1996.
R. Bartle and D. Sherbert. Introduction to Real Analysis. Wiley, 2 edition, 1982.
C. Benzmüller. Equality and Extensionality in Higher-Order Theorem Proving. PhD thesis, Department of Computer Science, Saarland University, 1999.
C. Benzmüller, M. Bishop, and V. Sorge. Integrating TPS and Ωmega. Journal of Universal Computer Science, 5:188–207, 1999.
C. Benzmüller, A. Fiedler, A. Meier, and M. Pollet. Irrationality of √2 - a case study in Ωmega. Seki-Report SR-02-03, Department of Computer Science, Saarland University, 2002.
C. Benzmüller and M. Kohlhase. LEO-a higher-order theorem prover. In Proceedings of the 15th International Conference on Automated Deduction (CADE-15), LNAI, LINDAU, Germany, 1998.
C. Benzmüller, A. Meier, and V. Sorge. Bridging theorem proving and mathematical knowledge retrieval. In Festschrift in Honour of Jörg Siekmann’s 60s Birthday, LNAI, 2002.
C. Benzmüller and V. Sorge. A blackboard architecture for guiding interactive proofs. In Proceedings of 8th International Conference on Artificial Intelligence: Methodology, Systems, Applications (AIMSA’ 98), LNAI, Sozopol, Bulgaria, 1998.
C. Benzmüller and V. Sorge. Ω-Ants-An open approach at combining Interactive and Automated Theorem Proving. In M. Kerber and M. Kohlhase, editors, Proceedings of the 8th Symposium on the Integration of Symbolic Computation and Mechanized Reasoning (Calculemus-2000). AK Peters, 2001.
M. Bishop and P. Andrews. Selectively instantiating definitions. In H. Kirchner, editors. Proceedings of the 15th Conference on Automated Deduction, number 1421 in LNAI. Springer Verlag, 1998. Kirchner and Kirchner [26].
W. Bledsoe. Challenge problems in elementary calculus. Journal of Automated Reasoning, 6:341–359, 1990.
A. Bundy. The use of explicit plans to guide inductive proofs. In E. Lusk and R. Overbeek, editors, Proceedings of the 9th Conference on Automated Deduction, number 310 in LNCS, pages 111–120, Argonne, Illinois, USA, 1988. Springer Verlag.
A. Bundy, editor. Proceedings of the 12th Conference on Automated Deduction, number 814 in LNAI, Nancy, France, 1994. Springer Verlag.
B. Char, K. Geddes, G. Gonnet, B. Leong, M. Monagan, and S. Watt. First leaves: a tutorial introduction to Maple V. Springer Verlag, Berlin, 1992.
L. Cheikhrouhou and J. Siekmann. Planning diagonalization proofs. In F. Giunchiglia, editor, Proceedings of 8th International Conference on Artificial Intelligence: Methodology, Systems, Applications (AIMSA’ 98), pages 167–180, Sozopol, Bulgaria, 1998. Springer Verlag, Berlin, Germany, LNAI 1480.
L. Cheikhrouhou and V. Sorge. PDS-A Three-Dimensional Data Structure for Proof Plans. In Proceedings of the International Conference on Artificial and Computational Intelligence (ACIDCA’2000), 2000.
A. Church. A Formulation of the Simple Theory of Types. The Journal of Symbolic Logic, 5:56–68, 1940.
Coq Development Team. The Coq Proof Assistant Reference Manual. INRIA. see http://coq.inria.fr/doc/main.html.
A. Fiedler. P.rex: An interactive proof explainer. In R. Goré, A. Leitsch, and T. Nipkow, editors, Automated Reasoning-1st International Joint Conference, IJCAR 2001, number 2083 in LNAI. Springer, 2001.
A. Fiedler. User-adaptive proof explanation. PhD thesis, Naturwissenschaftlich-Technische Fakultät I, Saarland University, Saarbrücken, Germany, 2001.
A. Franke and M. Kohlhase. System description: MBase, an open mathematical knowledge base. In McAllester [29].
H. Gebhard. Beweisplanung für die beweise der vollständigkeit verschiedener reso-lutionskalküle in Ωmega. Master’s thesis, Saarland University, Saarbrücken, Germany, 1999.
M. Gordon and T. Melham. Introduction to HOL-A theorem proving environment for higher order logic. Cambridge University Press, 1993.
X. Huang. Reconstructing Proofs at the Assertion Level. In Bundy [14], pages 738–752.
C. Kirchner and H. Kirchner, editors. Proceedings of the 15th Conference on Automated Deduction, number 1421 in LNAI. Springer Verlag, 1998.
H. Kirchner and C. Ringeissen, editors. Frontiers of combining systems: Third International Workshop, FroCoS 2000, volume 1794 of LNAI. Springer, 2000.
M. Kohlhase and A. Franke. MBase: Representing knowledge and context for the integration of mathematical software systems. Journal of Symbolic Computation; Special Issue on the Integration of Computer algebra and Deduction Systems, 32(4):365–402, September 2001.
D. McAllester, editor. Proceedings of the 17th Conference on Automated Deduction, number 1831 in LNAI. Springer, 2000.
A. Meier. TRAMP: Transformation of Machine-Found Proofs into Natural Deduction Proofs at the Assertion Level. In McAllester [29].
A. Meier, M. Pollet, and V. Sorge. Classifying Isomorphic Residue Classes. In R. Moreno-Diaz, B. Buchberger, and J.-L. Freire, editors, A Selection of Papers from the 8th International Workshop on Computer Aided Systems Theory (Euro-CAST 2001), volume 2178 of LNCS, pages 494–508. Springer Verlag, 2001.
A. Meier, M. Pollet, and V. Sorge. Comparing approaches to the exploration of the domain of residue classes. Journal of Symbolic Computation, forthcoming.
E. Melis. Island planning and refinement. Seki-Report SR-96-10, Department of Computer Science, Saarland University, 1996.
E. Melis and A. Meier. Proof planning with multiple strategies. In J. Loyd, V. Dahl, U. Furbach, M. Kerber, K. Lau, C. Palamidessi, L.M. Pereira, Y. Sagi-vand, and P. Stuckey, editors, Proceedings of the First International Conference on Computational Logic, volume 1861 of LNAI, pages 644–659. Springer-Verlag, 2000.
E. Melis and J. Siekmann. Knowledge-based proof planning. Artificial Intelligence, 115(1):65–105, 1999.
E. Melis, J. Zimmer, and T. Müller. Integrating constraint solving into proof planning. In C. Ringeissen, editors. Frontiers of combining systems: Third International Workshop, FroCoS 2000, volume 1794 of LNAI. Springer, 2000. Kirchner and Ringeissen [27].
S. Owre, S. Rajan, J.M. Rushby, N. Shankar, and M. Srivas. PVS: Combining specification, proof checking, and model checking. In R. Alur and T. Henzinger, editors, Computer-Aided Verification, CAV’ 96, volume 1102 of LNCS, pages 411–414, New Brunswick, NJ, 1996. Springer-Verlag.
J. Richardson, A. Smaill, and I. Green. System description: Proof planning in higher-order logic with λclam. In H. Kirchner, editors. Proceedings of the 15th Conference on Automated Deduction, number 1421 in LNAI. Springer Verlag, 1998. Kirchner and Kirchner [26].
M. Schönert et a1. GAP-Groups, Algorithms, and Programming. Lehrstuhl D für Mathematik, Rheinisch Westfälische Technische Hochschule, Aachen, Germany, 1995.
J. Siekmann, C. Benzmüller, V. Brezhnev, L. Cheikhrouhou, A. Fiedler, A. Franke, H. Horacek, M. Kohlhase, A. Meier, E. Melis, M. Moschner, I. Normann, M. Pollet, V. Sorge, C. Ullrich, C.-P. Wirth, and J. Zimmer. Proof development with Ωmega. In Voronkov [47], pages 143–148. See http://www.ags.uni-sb.de/~omega/.
J. Siekmann, C. Benzmüller, A. Fiedler, A. Meier, and M. Pollet. Proof development with Ωmega: √2 is not rational. Special Issue of Journal of Automated Reasoning, 2002. Submitted.
J. Siekmann, S. Hess, C. Benzmüller, L. Cheikhrouhou, A. Fiedler, H. Horacek, M. Kohlhase, K. Konrad, A. Meier, E. Melis, M. Pollet, and V. Sorge. LOUI: Lovely Ωmega User Interface. Formal Aspects of Computing, 11:326–342, 1999.
V. Sorge. Non-Trivial Computations in Proof Planning. In C. Ringeissen, editors. Frontiers of combining systems: Third International Workshop, FroCoS 2000, volume 1794 of LNAI. Springer, 2000. Kirchner and Ringeissen [27].
V. Sorge. Ω-Ants-A Blackboard Architecture for the Integration of Reasoning Techniques into Proof Planning. PhD thesis, Saarland University, Saarbrücken, Germany, 2001.
G. Sutcliffe, C. Suttner, and T. Yemenis. The TPTP problem library. In Bundy [14].
The Ωmega group. POST. See at http://www.ags.uni-sb.de/~omega/primer/post.html.
A. Voronkov, editor. Proceedings of the 18th International Conference on Automated Deduction, number 2392 in LNAI. Springer Verlag, 2002.
F. Wiedijk. The fifteen provers of the world. Unpublished Draft, 2002.
J. Zimmer and M. Kohlhase. System description: The mathweb software bus for distributed mathematical reasoning. In Voronkov [47], pages 138–142.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2002 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Siekmann, J., Benzmüller, C., Fiedler, A., Meier, A., Pollet, M. (2002). Proof Development with ΩMEGA: √2 Is Irrational. In: Baaz, M., Voronkov, A. (eds) Logic for Programming, Artificial Intelligence, and Reasoning. LPAR 2002. Lecture Notes in Computer Science(), vol 2514. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36078-6_25
Download citation
DOI: https://doi.org/10.1007/3-540-36078-6_25
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-00010-5
Online ISBN: 978-3-540-36078-0
eBook Packages: Springer Book Archive