Skip to main content

FUTURA: Hybrid System for Electric Load Forecasting by Using Case-Based Reasoning and Expert System

  • Conference paper
  • First Online:
Topics in Artificial Intelligence (CCIA 2002)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2504))

Included in the following conference series:

Abstract

The results of combining a numeric extrapolation of data with the methodology of case-based reasoning and expert systems in order to improve the electric load forecasting are presented in this contribution. Registers of power consumption are stored as cases that are retrieved and adapted by an expert system to improve a numeric forecasting given by numeric algorithms. FUTURA software has been developed as a result of this work. It combines the proposed techniques in a modular way while it provides a graphic user interface and access capabilities to existing data bases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aamodt, A., Plaza, E. (1994) Case-Base Reasoning: foundational issues, methodologicalvariations and system approaches. AI Communications. IOS Press, Vol. 7:1 pp 39–59.

    Google Scholar 

  2. Bartkiewicz, W. (2000) Neuro-Fuzzy Approaches to Short-Term Electrical Load Forecasting. Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks (IJCNN’00).

    Google Scholar 

  3. Bartkiewicz, W. Gontar Z. and Zielinski, J. (2000) Uncertainty of the Short-Term Electrical Load Forecasting in Utilities. Proc. of the IEEE-INNS-ENNS-IJCNN’00.

    Google Scholar 

  4. Carpentiero, O., Silva A., Feichas C. (2000) A Hierarchical Neural Model in Short-TermLoad Forecasting. Proceedings of the IEEE-INNS-ENNS-IJCNN’00.

    Google Scholar 

  5. Charytoniuk, W. y Mo-Shing Chen (2000). Very short-term load forecasting using artificial neural networks. IEEE Trans. on Power Systems, Vol. 15 No. 1, 263–268.

    Article  Google Scholar 

  6. Charytoniuk, W.; Chen, M.S.; Van Olinda, P. (1997) Nonparametric Regression Based Short-Term Load Forecasting. U. of Texas at Arlington. PE-891-PWRS-0-08-1997

    Google Scholar 

  7. Comisión de Tarifas de Energίa (2001) Estudio de Costos del Valor Agregado de Distribución. Gerencia Adjunta de Regulación tarifarίa(ex CTE)-OSINERG. Lima.

    Google Scholar 

  8. Dabbaaghchi I, Cristie R., et al. (1997). Al Aplication Areas in Power Systems, IEEE Expert, January February

    Google Scholar 

  9. De la Rosa, J.(1999) Sistemes experts a temps real, Publicación de Universitat de Girona, España.

    Google Scholar 

  10. Electric Power Research Institute (1979) Research into Load Forecasting and Distribution Planning, EPRI Report EL-1198, EPRI, Palo Alto,CA.

    Google Scholar 

  11. Garcia, Aet al.(1994) A Neural System for Short-Term Load Forecasting Based on Day-Type Classification, Proc. ISAP94, pp. 353–360.

    Google Scholar 

  12. GART-OSINERG. Anuario Estadίstico 1996-1997-1998-1999-2000. Gerencia Adjunta de Regulación Tarifarίa.-Organismo supervisor de la inversión en energίa GART OSINERG. Lima Perú.

    Google Scholar 

  13. Hansen, B. (2000) Analog forecasting of ceiling and visibility using fuzzy sets. Maritimes Weather Centre, Darmouth, Nova Scotia.

    Google Scholar 

  14. Hong-Tzer, Y, et al (1996) Identification of ARMAX Model for short term load forecasting: an evolutionary programming approach. IEEE Trans. on Power Systems, Vol. 11, No. 1, 403–408.

    Article  Google Scholar 

  15. Lee, H. (1996) Spatial Electric Load Forecasting, Marcel Dekker, Inc.

    Google Scholar 

  16. Melendez J. Macaya D., Colomer J., (2001), Case Based Reasoning methodology for process suprvision” CG proceedings of the ECC’01, European Control Conference

    Google Scholar 

  17. Melendez J, Colomer J, de la Rosa JL, (2001), “Expert Supervision Based on Cases”, Proceedings of the 8th IEEE International Conference on Emerging Technologies and Factory Automation, ETFA’0 1, pp: 431–440.

    Google Scholar 

  18. Vilcahuamán, R. et al. (1999) Sistema experto para el pronostico de la demanda. CONIMERA XXV, Lima, Perú.

    Google Scholar 

  19. Vilcahuamán, R. Medina, I. y Trelles, A. (2000) PRONOS: Sistema experto para el pronostico de la demanda. Facultad de Ingenierίa de Sistemas. Universidad Nacional del Centro del Perú.

    Google Scholar 

  20. Third international conference on case-based reasoning (1999) Engineering Applications of Case-Based Reasoning. Special Issue of The International Journal.Engineering Applications of Artificial Intelligence. Volume 12(6) 1999.

    Google Scholar 

  21. Richter, M. The Knowledge Contained in Similary Measures. University of Kaiserlautern.

    Google Scholar 

  22. Mori, H., y Yuihara, A. (2001) Deterministic Annealing clustering for ANN-based shortterm load forecasting. IEEE Trans. on Power Systems, Vol. 16, No. 3, 545–552.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vilcahuamán, R., Meléndez, J., de la Rosa, J.L. (2002). FUTURA: Hybrid System for Electric Load Forecasting by Using Case-Based Reasoning and Expert System. In: Escrig, M.T., Toledo, F., Golobardes, E. (eds) Topics in Artificial Intelligence. CCIA 2002. Lecture Notes in Computer Science(), vol 2504. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36079-4_11

Download citation

  • DOI: https://doi.org/10.1007/3-540-36079-4_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00011-2

  • Online ISBN: 978-3-540-36079-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics