Skip to main content

Association Rule Extraction for Text Mining

  • Conference paper
  • First Online:
Flexible Query Answering Systems (FQAS 2002)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2522))

Included in the following conference series:

  • 458 Accesses

Abstract

We present the definition of fuzzy association rules and fuzzy transactions in a text framework. The traditional mining techniques are applied to documents to extract rules. The fuzzy framework allows us to deal with a fuzzy extended Boolean model. Text mining with fuzzy association rules is applied to one of the classical problems in Information Retrieval: query refinement. The extracted rules help users to query the system by showing them a list of candidate terms to refine the query. Different procedures to apply these rules in an automatic and semi-automatic way are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, R., Imielinski, T., Swami, A. Mining Association Rules between Set of Items in Large Databases. Proc. of the 1993 ACM SIGMOD Conference, pp. 207–216, 1993.

    Google Scholar 

  2. Berzal, F., Delgado, M., Sánchez, D., Vila, M.A. Measuring the accuracy and importance of association rules. Tech. Rep. CCIA-00-01-16, Department of Computer Science and Artificial Intelligence, University of Granada, 2000.

    Google Scholar 

  3. Buell, D.A., Kraft, D.H. Performance Measurement in a Fuzzy Retrieval Environment. In Proceedings of the Fourth International Conference on Information Storage and Retrieval, ACM/SIGIR Forum, 16(1), pp. 56–62, Oakland, CA, 1981.

    Google Scholar 

  4. Chang, C.H., Hsu, C.C. Enabling Concept-Based Relevance Feedback for Information Retrieval on the WWW. IEEE Transactions on Knowledge and Data Engineering, vol. 11, no.4, 1999.

    Google Scholar 

  5. Delgado, M., Sánchez, D., Vila, M.A. Acquisition of fuzzy association rules from medical data. In Barro, S. and Marín, R. (Eds.) Fuzzy Logic in Medicine, Physica-Verlag, 2000.

    Google Scholar 

  6. Delgado, M., Sánchez, D., Vila, M.A. Fuzzy cardinality based evaluation of quantified sentences. International Journal of Approximate Reasoning, vol. 23, pp. 23–66, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  7. Delgado, M., Martín-Bautista, M.J., Sánchez, D., Vila, M.A. Mining strong approximate dependences from relational databases. Proc. Of IPMU 2000, Madrid.

    Google Scholar 

  8. Delgado, M., Martín-Bautista, M.J., Sánchez, D., Vila, M.A. Mining association rules with improved semantics in medical databases. Artificial Intelligence in Medicine vol. 21, pp. 241–245, 2001.

    Article  Google Scholar 

  9. Delgado, M., Marín, N., Sánchez, D., Vila, M.A. Fuzzy Association Rules: General Model and Applications. IEEE Transactions of Fuzzy Systems, vol. 126, no.2, pp. 41–54, 2002.

    Google Scholar 

  10. Delgado, M., Martín-Bautista, M.J., Sánchez, D., Vila, M.A. Mining Text Data: Special Features and Patterns. Proc. of EPS Exploratory Workshop on Pattern Detection and Discovery in Data Mining, Imperial College London, UK, September 2002.

    Google Scholar 

  11. Efthimiadis, R. Query Expansion. Annual Review of Information Systems and Technology, vol. 31, pp. 121–187, 1996.

    Google Scholar 

  12. Feldman, R., Hirsh, H. Mining associations in text in the presence of Background Knowledge Proc. of the Second International Conference on Knowledge Discovery from Databases, 1996.

    Google Scholar 

  13. Feldman, R., Fresko, M., Kinar, Y., Lindell, Y., Liphstat, O., Rajman, M., Schler, Y., Zamir, O. Text Mining at the Term Level. Proc. of the 2nd European Symposium of Principles of Data Mining and Knowledge Discovery, pp. 65–73, 1998.

    Google Scholar 

  14. Fu, A.W., Wong, M.H., Sze, S.C., Wong, W.C., Wong, W.L., Yu, W.K. Finding Fuzzy Sets for the Mining of Fuzzy Association Rules for Numerical Attributes, Proc. of Int. Symp. on Intelligent Data Engineering and Learning (IDEAL’98), Hong Kong, pp.263–268, 1998.

    Google Scholar 

  15. Gauch, S., Smith, J.B. An Expert System for Automatic Query Reformulation. Journal of the American Society for Information Science, 44(3), pp. 124–136.

    Google Scholar 

  16. Harman, D.K. “Relevance Feedback and Other Query Modification Techniques”. In W.B. Frakes and R. Baeza-Yates (Eds.) Information Retrieval: Data Structures and Algorithms, pp. 241–263, Prentice Hall, 1992.

    Google Scholar 

  17. Hearst, M. Untangling Text Data Mining. Proc. of the 37th Annul Meeting of the Association for Computational Linguistics (ACL’99), University of Maryland, June1999.

    Google Scholar 

  18. Kodratoff, Y. Knowledge Discovery in Texts: A Definition, and Applications. In Z. W. Ras and A. Skowron (Eds.) Foundation of Intelligent Systems, Lectures Notes on Artificial Intelligence 1609, Springer Verlag, 1999.

    Google Scholar 

  19. Kraft, D.H., Petry, F.E., Buckles, B.P., Sadasivan, T. Genetic Algorithms for Query Optimization in Information Retrieval: Relevance Feedback. In E. Sanchez, T. Shibata and L. Zadeh, (Eds.), Genetic Algorithms and Fuzzy Logic Systems, in Advances in Fuzziness: Applications and Theory, vol. 7, pp. 157–173, World Scientific.

    Google Scholar 

  20. Lin, S.H., Shih, C.S., Chen, M.C., Ho, J.M., Ko, M.T., Huang, Y.M. Extracting Classification Knowledge of Internet Documents with Mining Term Associations: A Semantic Approach. Proc. of ACM/SIGIR’98, pp. 241–249, Melbourne, Australia, 1998.

    Google Scholar 

  21. Piatetsky-Shapiro, G. Discovery, Analysis, and Presentation of Strong Rules. In Piatetsky-Shapiro, G. and Frawley W.J. (Eds.) Knowledge Discovery in Databases, AAAI/MIT Press, 1991.

    Google Scholar 

  22. Porter, M.F. An algorithm for suffix stripping. Program, 14(3): 130–137, 1980.

    Google Scholar 

  23. Salton, G., McGill, M.J. Introduction to Modern Information Retrieval. McGraw-Hill, 1983.

    Google Scholar 

  24. Salton, G., Buckley, C. Term-weighting approaches in automatic text retrieval. Information Processing and Management, vol. 24, no. 5, pp. 513–523, 1988.

    Article  Google Scholar 

  25. Srinivasan, P., Ruiz, M.E., Kraft, D.H., Chen, J. Vocabulary mining for information retrieval: rough sets and fuzzy sets. Information Processing and Management, 37, pp. 15–38, 2001.

    Article  MATH  Google Scholar 

  26. Zadeh, L.A. A computational approach to fuzzy quantifiers in natural languages. Computing and Mathematics with Applications, vol. 9, no. 1, pp. 149–184, 1983.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Delgado, M., MartÍn-Bautista, M., Sánchez, D., Serrano, J., Vila, M. (2002). Association Rule Extraction for Text Mining. In: Carbonell, J.G., Siekmann, J., Andreasen, T., Christiansen, H., Motro, A., Legind Larsen, H. (eds) Flexible Query Answering Systems. FQAS 2002. Lecture Notes in Computer Science(), vol 2522. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36109-X_12

Download citation

  • DOI: https://doi.org/10.1007/3-540-36109-X_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00074-7

  • Online ISBN: 978-3-540-36109-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics