Abstract
We present the definition of fuzzy association rules and fuzzy transactions in a text framework. The traditional mining techniques are applied to documents to extract rules. The fuzzy framework allows us to deal with a fuzzy extended Boolean model. Text mining with fuzzy association rules is applied to one of the classical problems in Information Retrieval: query refinement. The extracted rules help users to query the system by showing them a list of candidate terms to refine the query. Different procedures to apply these rules in an automatic and semi-automatic way are also presented.
Preview
Unable to display preview. Download preview PDF.
References
Agrawal, R., Imielinski, T., Swami, A. Mining Association Rules between Set of Items in Large Databases. Proc. of the 1993 ACM SIGMOD Conference, pp. 207–216, 1993.
Berzal, F., Delgado, M., Sánchez, D., Vila, M.A. Measuring the accuracy and importance of association rules. Tech. Rep. CCIA-00-01-16, Department of Computer Science and Artificial Intelligence, University of Granada, 2000.
Buell, D.A., Kraft, D.H. Performance Measurement in a Fuzzy Retrieval Environment. In Proceedings of the Fourth International Conference on Information Storage and Retrieval, ACM/SIGIR Forum, 16(1), pp. 56–62, Oakland, CA, 1981.
Chang, C.H., Hsu, C.C. Enabling Concept-Based Relevance Feedback for Information Retrieval on the WWW. IEEE Transactions on Knowledge and Data Engineering, vol. 11, no.4, 1999.
Delgado, M., Sánchez, D., Vila, M.A. Acquisition of fuzzy association rules from medical data. In Barro, S. and Marín, R. (Eds.) Fuzzy Logic in Medicine, Physica-Verlag, 2000.
Delgado, M., Sánchez, D., Vila, M.A. Fuzzy cardinality based evaluation of quantified sentences. International Journal of Approximate Reasoning, vol. 23, pp. 23–66, 2000.
Delgado, M., Martín-Bautista, M.J., Sánchez, D., Vila, M.A. Mining strong approximate dependences from relational databases. Proc. Of IPMU 2000, Madrid.
Delgado, M., Martín-Bautista, M.J., Sánchez, D., Vila, M.A. Mining association rules with improved semantics in medical databases. Artificial Intelligence in Medicine vol. 21, pp. 241–245, 2001.
Delgado, M., Marín, N., Sánchez, D., Vila, M.A. Fuzzy Association Rules: General Model and Applications. IEEE Transactions of Fuzzy Systems, vol. 126, no.2, pp. 41–54, 2002.
Delgado, M., Martín-Bautista, M.J., Sánchez, D., Vila, M.A. Mining Text Data: Special Features and Patterns. Proc. of EPS Exploratory Workshop on Pattern Detection and Discovery in Data Mining, Imperial College London, UK, September 2002.
Efthimiadis, R. Query Expansion. Annual Review of Information Systems and Technology, vol. 31, pp. 121–187, 1996.
Feldman, R., Hirsh, H. Mining associations in text in the presence of Background Knowledge Proc. of the Second International Conference on Knowledge Discovery from Databases, 1996.
Feldman, R., Fresko, M., Kinar, Y., Lindell, Y., Liphstat, O., Rajman, M., Schler, Y., Zamir, O. Text Mining at the Term Level. Proc. of the 2nd European Symposium of Principles of Data Mining and Knowledge Discovery, pp. 65–73, 1998.
Fu, A.W., Wong, M.H., Sze, S.C., Wong, W.C., Wong, W.L., Yu, W.K. Finding Fuzzy Sets for the Mining of Fuzzy Association Rules for Numerical Attributes, Proc. of Int. Symp. on Intelligent Data Engineering and Learning (IDEAL’98), Hong Kong, pp.263–268, 1998.
Gauch, S., Smith, J.B. An Expert System for Automatic Query Reformulation. Journal of the American Society for Information Science, 44(3), pp. 124–136.
Harman, D.K. “Relevance Feedback and Other Query Modification Techniques”. In W.B. Frakes and R. Baeza-Yates (Eds.) Information Retrieval: Data Structures and Algorithms, pp. 241–263, Prentice Hall, 1992.
Hearst, M. Untangling Text Data Mining. Proc. of the 37th Annul Meeting of the Association for Computational Linguistics (ACL’99), University of Maryland, June1999.
Kodratoff, Y. Knowledge Discovery in Texts: A Definition, and Applications. In Z. W. Ras and A. Skowron (Eds.) Foundation of Intelligent Systems, Lectures Notes on Artificial Intelligence 1609, Springer Verlag, 1999.
Kraft, D.H., Petry, F.E., Buckles, B.P., Sadasivan, T. Genetic Algorithms for Query Optimization in Information Retrieval: Relevance Feedback. In E. Sanchez, T. Shibata and L. Zadeh, (Eds.), Genetic Algorithms and Fuzzy Logic Systems, in Advances in Fuzziness: Applications and Theory, vol. 7, pp. 157–173, World Scientific.
Lin, S.H., Shih, C.S., Chen, M.C., Ho, J.M., Ko, M.T., Huang, Y.M. Extracting Classification Knowledge of Internet Documents with Mining Term Associations: A Semantic Approach. Proc. of ACM/SIGIR’98, pp. 241–249, Melbourne, Australia, 1998.
Piatetsky-Shapiro, G. Discovery, Analysis, and Presentation of Strong Rules. In Piatetsky-Shapiro, G. and Frawley W.J. (Eds.) Knowledge Discovery in Databases, AAAI/MIT Press, 1991.
Porter, M.F. An algorithm for suffix stripping. Program, 14(3): 130–137, 1980.
Salton, G., McGill, M.J. Introduction to Modern Information Retrieval. McGraw-Hill, 1983.
Salton, G., Buckley, C. Term-weighting approaches in automatic text retrieval. Information Processing and Management, vol. 24, no. 5, pp. 513–523, 1988.
Srinivasan, P., Ruiz, M.E., Kraft, D.H., Chen, J. Vocabulary mining for information retrieval: rough sets and fuzzy sets. Information Processing and Management, 37, pp. 15–38, 2001.
Zadeh, L.A. A computational approach to fuzzy quantifiers in natural languages. Computing and Mathematics with Applications, vol. 9, no. 1, pp. 149–184, 1983.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2002 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Delgado, M., MartÍn-Bautista, M., Sánchez, D., Serrano, J., Vila, M. (2002). Association Rule Extraction for Text Mining. In: Carbonell, J.G., Siekmann, J., Andreasen, T., Christiansen, H., Motro, A., Legind Larsen, H. (eds) Flexible Query Answering Systems. FQAS 2002. Lecture Notes in Computer Science(), vol 2522. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36109-X_12
Download citation
DOI: https://doi.org/10.1007/3-540-36109-X_12
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-00074-7
Online ISBN: 978-3-540-36109-1
eBook Packages: Springer Book Archive