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Abstract

Mobile services offering multi-feature query ca-
pabilities must meet tough response time re-
quirements to gain customer acceptance. The
top-k query model is a popular candidate to im-
plement such services. Focusing on a central
server architecture we present a new algorithm
called SR-Combine that closely self-adapts itself
to particular cost ratios in such environments.
SR-Combine optimizes both the object accesses
and the query run-times. We perform a series of
synthetical benchmarks to verify the superiority
of SR-Combine over existing algorithms. In or-
der to assess whether it can meet the stated re-
sponse time requirements for mobile access, we
propose a psychologically founded model. It
turns out that for a wide range of practical cases
SR-Combine can satisfy these goals. Where this
isn't yet the case, we show up ways how to get
there systematically. Thus with SR-Combine a
breakthrough in real-time capabilities of top-k
querying for mobile services is in sight now.

1. Introduction

Top k querying has proven to be an increasingly demand-
ing problem in today’s applications. Areas like web-based
information services, enterprise information systems or
content-based media retrieval already make intensive use
of this new paradigm. A variety of applications in rela-
tional databases [CK97], multi-media databases [OR+98]
or recent approaches in location-based services [DGS00]
also show that topk queries are essential for advanced
database retrieval.

Example 1: Business Document Repositories
Consider the case of an insurance company storing their
letters and e-mails, contracts and related documents on a
central server. At each damage event the person in charge
wants to know about recent similar cases or the same
persons involved in different cases. Thus a query has to be
performed like: ”Give me the top cases preferably re-
cently with most similar kinds and costs of damages and
same people involved.”

Even in this typical example we can already identify four
classifiers (kind, costs, people, time), assign scores and
sort documents into lists ordered by their relevance to-
wards these issues (what will be called astream in the
following). However, when it comes to real-time capabili-
ties for combining streams, current approaches show their
limitations. Psychology [Pop97] teaches that users only
tend to accept response times up to 3 seconds before their
questions are answered. This real-time restriction can
generally be applied to on-line search engines and users
will allow higher run-times only for very difficult tasks
(e.g. in work environments), where they strongly depend
on the results. In mobile applications –especially if used
in private life– users of course don’t want to wait long,
but apply strict response-time expectations. In this area
there are even monetary reasons involved, because the
connection (and the service provided) is often charged
with respect to the usage time.

Recent algorithms for topk querying [Fag99, GBK00,
GBK01, FLN01, BGM02] served only special applica-
tions and tended to deteriorate in efficiency very quickly,
if the application environment or score distributions for
various queries changed. Besides, no real-time results for
algorithms in different environments have been published
so far (except [BGM02] who reported hours for distrib-
uted mobile services). This is because –though optimizing
the total number of object accesses– runtimes will never-
theless considerably increase, if the algorithms exten-
sively use expensive kinds of object accesses, e.g.
[WH+99]. Thus not only the overall number, but also the
different costs for different kinds of accesses and the spe-
cific application architecture have to be taken into ac-
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count. And what is more, when discussing real-time capa-
bilities, not only the cost of database accesses, but also
CPU costs have to be considered to build competitive
algorithms.

For instance the naïve approach of computing the
overall scores for all the objects in the collection obvi-
ously hardly causes any CPU costs, but uses lots of data-
base accesses. This trade-off is especially important for
the use in environments for mobile services, where small
and medium databases (N ≈ 10000) prevail and bandwidth
is low. Thus the setting for new algorithms is even harder
than traditional topk querying, where CPU costs could be
ignored for large database sizes and only the number of
object accesses counted. Due to the field of application
we will have to focus on few streams to combine (n < 10),
due to the technical constraints of mobile devices on small
numbers of return values (k = 3 to 10) and due to our real-
time requirements on response times of only a few sec-
onds.

Our paper is organized as follows. We will take a look
on mobile services, several application scenarios and the
recently proposed topk querying in section 2. The algo-
rithm SR-Combinewill be presented in section 3. In sec-
tion 4 we will focus on efficiency tests and present real-
time benchmarks forSR-Combinein different environ-
ments. Finally will close with a short summary and out-
look.

2. Top k Querying for Mobile Services

2.1 Characteristics of Mobile Services

With the current developments of devices like cell phones
or PDAs, mobile services will play an important role in
future information technology. Pervasive access on in-
formation becomes more and more attractive not only for
work, but also for private uses. We will illustrate this by
three scenarios of different mobile services and discuss
their specific characteristics and requirements.

Scenario 1
Mobile Access to global stock exchanges. Typical queries
are like: ”Get me the five top performers in the area of IT
industries that are involved in bio-technology.” The que-
rying for this type of service is mainly attribute-based and
in general there is virtually no difference in the costs of
sorted accesses and random accesses (like in [NR99]) (cf.
sec. 2.2).

Scenario 2
Location-based restaurant service. Typical queries are
like: “Get me the five nearest restaurants with Asian cui-
sine, top category and prices of about 40$ per meal.” The
querying is a mixture of attribute-based queries and spa-
tial retrieval. Random accesses are generally much more
expensive than sorted accesses ([BGM02] determined a
factor of 10 for this kind of service).

Scenario 3
Mobile on-line auctions. Typical queries are like: “Get
me the top five impressionist paintings, in rather brown
and green colors that have the lowest prices.” The query-
ing involves attribute-based parts often together with mul-
timedia attributes or extracted features [WBK01]. Ran-
dom accesses in this case are more expensive than sorted
accesses. Our practical tests show factors of about 6 (cf.
section 4.3).

service complexity updates sources
stock market low often external

location-based medium seldom mixed
mobile auctions high seldom central

As shown in the table above the three scenarios not only
differ in the costs for object accesses, but also in charac-
teristics like update behavior and use of external sources.
Whereas attribute-based stock market information has to
be updated in ranges of few seconds, the information for
more complex services involving e.g. multimedia data, is
somewhat more durable. Typical update intervals in these
cases range between days and weeks. This means that e.g.
stock market information has to be imported directly from
content providers. But the service provider can transfer
durable information like location-based or multimedia
data on central servers enabling efficient storage and
indexing schemes.

The research area of data integration over the web
[GB97, TSH01, GW00] has lead to several architectures
for different applications. Architectures for mobile ser-
vices are mainly twofold:

• Central Server Architecture (CSA): If the ser-
vice provider is also the content provider or han-
dles mainly durable information, services are
provided using a high performance server with
central data repositories.

• Distributed Sources Architecture (DSA): If the
service provider and content provider are differ-
ent or short update ranges are necessary, services
may be provided using an application server ga-
thering information on demand from distributed
external data sources accessed via the Internet.

Enabling topk queries in mobile environments, however,
poses some severe problems depending on the middle-
ware capabilities of algorithms. In [BGM02] ways to
build mobile services with a DSA architecture providing
direct access to various Internet sources are presented.
Though some of these services (e.g. location based city
maps or restaurant guides, etc.) would be desirable, tests
in [BGM02] also show that the processing times for such
simple tasks often need hours.

When trying to meet real-time requirements, we have
to build all three scenarios on a CSA architecture. Thus
first of all we have to address the problem of combining



Internet sources with local database servers. A solution is
given by [GW00] who describe the WSQ/DSQ approach
that handles direct accesses to Internet sources in an asyn-
chronous manner and caches the results for later use in
virtual tables of a central database server. Since the ser-
vice provider obviously knows what type of queries to
expect, what data is commonly accessed and how often
updates are needed to meet the service design, a caching
strategy with asynchronous updates is suitable for mobile
services. Figure 1 outlines the intended architecture.

external 
sources

asynchr.
update

central server

mobile
clients

application server

combining
  engine

delivery
 engine Internet

Fig 1: Intended CSA architecture

The mobile service consists of a application server (or a
proxy like in [GB97]) containing a combining engine
which runs theSR-Combinealgorithm. All the content is
retrieved from a central server (that may be updated in an
asynchronous manner). As shown in e.g. [WBK01] with
the example of mobile online auctions the delivery engine
can transform e.g. generic XML formats using XSLT to
support any mobile device e.g. via WAP or i-mode gate-
ways. Another advantage of this architecture is that all
data on the local server can be indexed to suit the design
of the service. Through statistical analysis also the costs
for certain usage patterns can be estimated providing the
cost estimations to determine the ratio between different
kinds of access personalized for each user. Besides, due to
this architecture for all objects different kinds of access
are possible, what posed a problem in [BGM02].

2.2 Topk Querying Revisited

Since topk querying is an important feature not only of
mobile services, we will revisit some recently proposed
algorithms that can later be used as a yard stick. There
have been some different approaches in literature to solve
the problem of top k querying. In particular they can be
divided into two different categories. Those guaranteeing
a correct result set and those using statistical data to get
the result set more efficiently [CG99, DR99], however
with a specific amount of uncertainty about the correct-
ness of the retrieval result. Due to the nature of mobile
services with restricted end devices (bandwidth, display-
size, etc.) demanding rather small numbers of objects to
be output, in the following we will only refer to those

delivering a correct result set to improve chances, that
many of the few objects returned are relevant, i.e. we need
high precision.

Most applications of topk querying algorithms are
mainly concerned with gathering information from a vari-
ety of data sources. Generally speaking all known algo-
rithms always rely on two kind of access methods provid-
ing basic scores:

• The sorted access(SA) ranks database objects
according to their score values (descending) with
respect to a single feature and accesses objects
rank by rank.

• The random access(RA) can be posed to a data
source retrieving the score value of a single ob-
ject with respect to a single stream.

[BGM02] addresses the problem of sources that may
be restricted to either handle sorted accesses (so called S-
sources) or random accesses (so-called R-sources). How-
ever, due to our CSA architecture we can always rely on
both kinds of accesses (so-called SR-sources) and thus
our algorithm presented here is calledSR-Combine. In the
following we will always rely on SR-sources.

Having gathered the basic score values by sorted or
random access, the total score is determined using a suit-
able monotonic combining functionF. Both access meth-
ods can however essentially differ in their respective
costs. As a rule of thumb it can be stated that the more
heterogeneous the environment gets, the more expensive
the random access will be compared to sorted accesses.
This leads to a large variety of environments ranging from
those where random accesses are cheaper than sorted ac-
cesses [NR99], via those where random accesses are more
expensive with a certain factor [WH+99], to those where
random accesses are virtually impossible [Coh98].

Generally speaking algorithms for topk querying try
to minimize the number of database objects that have to
be accessed before being able to deliver a correct result
set. The first algorithm in this area is given by Fagin’s
algorithm [Fag96]. Early approaches by [NR99] for
applications in fuzzy logic and by [OR+98] adapted for
use in multimedia content-based retrieval, however,
presented a threshold algorithm that performed essentially
better. This threshold algorithm was generalized to any
monotonic combining function and improved with a
heuristic control flow in the Quick-Combine approach. A
detailed analysis together with first performance results of
Quick-Combine is given in [GBK00]. The basic Quick-
Combine has been proven to be optimal in minimizing the
necessary sorted accesses for topk querying [FLN01].
However, for each sorted access Quick-Combine has to
perform (n-1) random accesses to guarantee the earliest
possible termination. Since costs for random accesses
may explode in some environments, minimizing the
overall object accesses may not always be the best
strategy. In some environments it can be far cheaper to
replace some random accesses by a larger number of
sorted accesses.



This has lead to the development of algorithms like
Stream-Combine or NRA [GKB01, FLN01] that do not
need any random accesses at all. However, in practical
test algorithms of this type quickly showed their limited
applicability by accessing 80-90% of all database objects
in environments, where skewed data is involved, thus
quickly loosing their speed-up even over the naïve ap-
proach. Extensive performance tests in [GBK00] show
that the Quick-Combine achieves its best results, if
skewed data is involved, whereas the Stream-Combine
approach performs best in environments with uniformly
distributed data. For a later benchmark we will investigate
this behavior a little closer in section 4.2.

To overcome the limitations of Stream-Combine a
new algorithm called CA (combined algorithm) is given
in [FLN01]. CA runs like Stream-Combine, but periodi-
cally performs random accesses like Quick-Combine on
most promising objects. However, it shows the same
characteristic behavior and limitations as the Quick-
Combine approach. Thus a mere combination of known
algorithms will not solve our problem, but we have to
design a new paradigm to get a competitive algorithm that
self-adapts to different environments.

3. TheSR-CombineAlgorithm

In the following we will present theSR-Combinealgo-
rithm overcoming the disadvantages of previous algo-
rithms by suitably self-adapting to a variety of environ-
ments and controlling run-time costs. The algorithmSR-
Combine consists of three phases that successively re-
trieve k overall best objects. To understand the algorithm
more easily we will first present a sketch of the different
phases withk=1 and then present some heuristics that lead
to a more efficient implementation of our algorithm.

Algorithm SR-Combine

• Phase 1 (Pruning Phase):
Phase 1 gathers objects from the different streams un-
til it can be guaranteed that at least one overall best
object has been seen among those objects gathered. It
can use two techniques: Sorted accesses are used to
see scores of (new) objects in streams in descending
order and random accesses are used to complete the
scores for objects already seen. For each object a
lower and an upper bound estimation for the object’s
total score can be made and there is at least one ob-
ject that definitely has a better or equal overall score
than all objects not seen so far.
• Phase 2 (Identifying Barriers):
Phase 2 divides all objects seen in phase 1 into those
that have no chance of being the top object and those
that have a chance, the so-called barrier objects. After
phase 2 we know that the overall best object is among
the barrier objects and all the other objects can be ex-
cluded in our search for the overall best object.

• Phase 3 (Removing Barriers):
Phase 3 successively completes scores of barrier ob-
jects to get more information about each object.
Again both sorted and random accesses are used de-
pending on the cost-ratio. Whenever the information
about any object is sufficient to exclude it from the
barrier objects, the object can be removed and phase
3 focuses on the remaining barrier objects. If enough
barrier objects have been removed, the algorithm can
output the overall best object and start over to get the
next overall best object.

In general the three phases of this algorithm are quite
common in the top k querying literature. In fact most al-
gorithms can be brought down to these three phases, how-
ever using different approaches to fulfill each phase. Thus
in the following we will present our retrieval model, have
a look at each phase and then present the full algorithm.

3.1 A Faster (Topk)* Retrieval Model

Since the correctness of the result set returned strongly
depends on the correct scoring of the underlying retrieval
system(s), the exact order of the bestk matches can be
neglected during the retrieval phases. As the system suc-
cessively outputs objects, any object can already be re-
turned, if we can be sure that it will definitely belong to
the set ofk best matches, no matter what its exact rank or
score in the final result set will be. Thus, outputting an
object our (topk)* retrieval model states that it belongs to
the k best objects, but does not yet determine whether it
will be the first ranked or thek-th ranked object (of
course, after the whole set ofk objects has been output,
the set can easily be ordered). Though tests have shown,
that this retrieval model will need the same total time to
deliver all k results, it essentially improves the time
needed before some first objects can be output. This is not
only important for psychological reasons, but gives the
user an earlier idea of the result set objects. While the
algorithm is still running, the user thus can use the mean-
time to decide, if the results are already satisfying and the
algorithm can be terminated early or if the query itself has
to be improved, etc.

In our case the advantage of this retrieval model is the
assertion that we can already safely return the first object,
if there are only (k-1) barrier objects left. Obviously, this
is because if only (k-1) objects have a chance of being
more relevant than our object, it may be the overall best
object, if all barriers can be removed, but it will at least
the k-th best object, even if all (k-1) barriers emerge to
have higher scores. Inductively we can conclude, that if a
second object should be output, there may at most be (k-2)
barriers, for the third object (k-3) barriers, and so on. On
the other hand this leads to the observation, that when
removing barriers for the output of a first object, we may
focus on a set ofk objects e.g. those having the highest
upper bound estimations and only need to have a look at



the remaining barriers whenever one of ourk barriers is
removed. Inductively this again leads to a restriction to a
set of (k - (number of objects returned)) objects, which
have to be updated regularly during the removing barriers
phase.

3.2 The Pruning Phase

To get an efficient pruning phase we will now state a few
heuristics. Some of these will be helpful in the third
phase of removing barriers also.

Heuristic 1: Taking the Environment into Account
Previous work shows that the costs for sorted and random
accesses may strongly differ depending on the environ-
ment. Very heterogeneous environments like in [WH+99,
Coh98] show very high costs for random accesses, in con-
trast environments like in [NR99] allow random accesses
that are even cheaper than sorted accesses. Thus strategies
like optimizing the total number of accesses, however
using an expensive kind of access may fail. Thus the algo-
rithm’s runtime may explode, if the specific cost-ratio
between sorted and random accesses is not taken into ac-
count.

Since some sorted accesses are necessary to see new
objects (if “wild guesses” are prohibited, which was
shown to be reasonable in [FLN01]), during the entire
algorithm our control flow takes care, that –based on the
cost-ratio– for each sorted access only as many random
accesses are performed, that the total runtime costs may at
most be doubled, though the total number of objects ac-
cesses is optimized. Thus the trade-off between minimiz-
ing total object accesses and exploding the runtime by
using more cost expensive accesses is bounded. This
technique is not only used within the pruning phase, but
can also be adapted to the removing barriers phase.ÿ

Heuristic 2: Using the Data Distribution
The data distribution in each stream may severely differ.
There may be streams with quickly decreasing scores (es-
pecially if skewed data is involved), streams with uni-
formly distributed score values or streams that provide
very similar or even the same score for a large number of
objects (e.g. if exact matches are involved and all the da-
tabase objects are split in perfect matches (1.0) or no
match (0.0)). Of course the evaluation of quickly decreas-
ing streams should be preferred, because in contrast to
constant streams, they discriminate well between objects.
A second important factor to estimate a certain stream’s
influence on the final result is the stream’s weight that is
used in the combining function. Obviously highly
weighted streams should be preferred.

In [GBK00] an indicator technique is proposed that
uses the relative decrease of a stream’s score distribution
together with a partial derivative of the combining func-
tion (e.g. a weighted mean) for the stream (if the deriva-
tive exists, otherwise - e.g. in the case of max as combin-

ing function - this part is set to 1/n). For the relative de-
crease in each stream we use the simple difference be-
tween the score of the last seen object (olast) and the score
of the p-th last seen object (op-th last), wherep can be any
natural number. Smaller values ofp estimate the local
behavior of a stream, larger values its more global behav-
ior. In practical tests the choice ofp=5 has lead to the best
results, thus we will usep=5 in all our later tests. Our in-
dicators for each stream are given by:

∆j := | ∂ F / ∂ xj | · (sj( olast) – sj( op-th last)) (1 � j � n)

Always choosing the right stream for sorted accesses
can lead to an important improvement factor for the algo-
rithm’s real time capabilities. Theoretically at most a fac-
tor of n can be reached over a classical round robin strat-
egy. Since practical tests show that even in the case of
only three streams involved our simple indicator gains a
factor of 2 (in run-times and object accesses, see diagram
below) virtually without causing computing costs, we
adapted this indicator for the use in our new algorithm
and thus halved its runtime. Of course after each sorted
access performed on a stream the indicator for this stream
has to be recalculated. Please note, that we inserted a line
in all our real-time diagrams that marks the 3 seconds
requirement. As can be seen in fig. 2 our Indicator tech-
nique helps to gain real-time capabilities (section 4 will
extensively deal with performance issues).

Run-times of SR-Combine in [sec]
(n = 3, N = 10 000)

0

2

4

6

8

k = 5 k = 10 k = 25

no indicator with indicator

Fig. 2: Effect of indicators on run-times

However, our indicators can perform another impor-
tant task. Since experiments show that algorithms relying
on extensive Random Accesses (like e.g. Quick-Combine)
tend to deteriorate in environments where uniformly dis-
tributed data prevails, in SR-Combine indicators are used
for compensation. If not at least one stream is detected
showing a skewed data distribution, no random accesses
are granted in-spite of the cost-ratio for the performed
sorted accesses. An indicator is said to show a skew, if it
is larger than the decrease that can be expected in the uni-
formly distributed case.

For instance in the case of an equally weighted arith-
metical mean as combining function, an indicator that
uses the distance between the last and thep-th last object



and N databases objects uniformly distributed over the
score interval [0, 1], the expected decrease in each stream
is given by (p-1 / N). Any larger value for an indicator
hints at a skew in the very stream. This simple heuristic
takes care that our SR-Combine does not deteriorate, even
in cases with uniformly distributed data streams only.ÿ

Heuristic 3: Accessing the Most Promising Objects
Having seen some objects by sorted access the algorithm
can spend some random accesses granted according to the
cost-ratio. However, in most cases there are not enough
random accesses to analyze every object and calculate its
aggregated score. Thus we have to spend our random ac-
cesses wisely for the most promising objects only.

This is implemented by performing random accesses
on one of those objects having the maximum lower bound
estimationmax_lowfirst. The completion of the score for
these objects will help to increasemax_lowmost quickly,
which of course propels an early termination of the prun-
ing phase. And the less objects we access during the prun-
ing phase, the less barriers we have to cope with.

If all the objects having the maximum lower bound are
completely known, we will use our random accesses on
those objects having the maximum upper bound estima-
tion. Since we don’t want to keep a list of the current up-
per bounds (that may change for most objects after each
sorted access), we will use a simple heuristic and access
objects in the order, they first have been seen. Because
obviously those objects seen quite early have the best
chances to get a high upper bound estimation. ÿ

Having stated our helpful heuristics, we still have to
show, that our pruning is correct. Therefore we state the
following theorem:

Theorem 1: Correct Termination of the Pruning Phase
If there is at least one objectox whose lower bound esti-
mation (max_low) is larger or equals the threshold calcu-
lated using the minimum score values of each stream as
input for the monotonic combining functionF, no object
that has not been seen, can be better than all seen objects,
i.e. an overall best object has already been seen.

Proof:
It is obvious that if an object’s lower bound for its aggre-
gated score is greater or equal any other object’s upper
bound, it has to be an overall best object. Thus, what has
to be shown is that an overall best object has already been
seen as the algorithm terminates the pruning phase. We
know that at least one objectox has been seen, whose
lower bound is larger or equals the threshold. Due to the
sorting of the streams we also know that each score of an
unseen objecto is smaller or equal the minimum of score
valuessi(oi) seen in each stream so far. Thus the aggre-
gated score ofo is limited by the score ofox:
F (s1(o),...,sn(o)) ≤ F (min (s1(o1)),..,min(sn(on))) =: thres

≤ low (ox) ≤ F (s1(ox),…,sn(ox)) ÿ

Now we are ready to present the complete algorithm for
our pruning phase. Please note, that no expensive updates
of all seen objects’ upper bounds are necessary during our
phase 1.

The Pruning Phase (Phase1)
While (thres> max_low) do
1. Get a new pair (onew, si(onew)) by sorted access on

streami and calculate a new indicator∆i

2. If there is at least one indicator showing a skew, set
random:= random+ costratio.

3. Update min(si(o)) with si(onew)) and calculate the
threshold thres using the minimum score values of
each stream as input forF.

4. If onewhas already occurred in the index then
4.1. Update its score entrysi(onew)) and recalculate

its lower boundlow(onew).
5. else

5.1. Initialize a record foronew in the index, initialize
its scoresi(onew)) and calculate its lower bound
low(onew).

6. If max_low< low(onew) setmax_low:= low(onew).
7. While random≥ 1 and (thres> max_low) do

7.1. If the score of any objecto having
low(o) = max_lowis not already entirely known,
perform a random access on objecto, set
random:= random–1 and (if necessary) update
low(o) andmax_low.

8. While random≥ 1 and (thres> max_low) do
8.1. Perform a random access on the objecto that

was the earliest object seen by sorted access and
whose score is not already entirely known, set
random:= random–1 and (if necessary) update
low(o) andmax_low.

9. Seti := m, with ∆m = max {∆j | 1 � j � n}

3.3 Identifying the barriers

After we can guarantee the existence of at least one result
object due to the pruning, we will identify all barriers out
of the seen objects, that still prevent the immediate output.
To get a more user-friendly output behavior we will rely
on the following heuristic.

Heuristic 4: Using the (Top k)* Retrieval Model
In the following, we will implement the (Top k)* strategy
from 2.1 by choosing a subset of barriers, called the work-
ing barriers. Working barriers will be chosen as those
object having the highest upper bound estimations. Only
upper and lower bounds of the barriers in the working
barriers set will be updated regularly, i.e. (k-returned)
objects. Whenever during phase 3 an object is removed
from working barriers, one of the remaining barriers is
chosen as replacement. ÿ

Another theorem will help us, to divide all objects seen
into barriers and non-barrier objects.



Theorem 2: Correctness of Identified Barriers
Only objects having an higher upper bound thanmax_low
can have a better aggregated score, than the objects with
maximum lower boundmax_low, i.e. only those objects
are barriers.

Proof: Obvious due to construction of the estimations.ÿ

The Identifying Barriers Phase (Phase 2)
1. Iterate the index of seen objects and update for each

object o the upper bound for its aggregated score
upp(o) using its known score values or –ifsi(o) is un-
known for anyi– the minimum score seen by sorted
access in streami as input forF.

2. Consider the objectotop having the maximum lower
bound max_low. If more such objects exist, choose
one having a highest upper bound.

3. Initialize a listbarriers, in which all the objects hav-
ing an upper bound higher thanmax_low(excluding
otop) are contained withoid.

4. Choose a listworking_barriers containing those
(k – returned) objects from barriers that have highest
upper bounds. Remove the chosen objects frombar-
riers.

3.4 Removing the Barriers and Output of Objects

For the last phase we will again use our heuristics from
phase 1 and 2. If we remove enough barriers we can out-
put an object guaranteed to belong to the topk objects:

Theorem 3: Correctness of Output Objects
Let returnedbe the number of objects already returned. If
there are less than (k – returned) barriers left inwork-
ing_barriers(i.e. phase 3 terminates), the objectotop hav-
ing the maximum lower boundmax_lowis one of thek
overall best objects.

Proof:
If any object is removed fromworking_barriers, in step 3
of phase 3 the list is filled periodically by using suitable
objects from the listbarriers. If phase 3 has terminated,
there must be less than (k – returned) objects inwork-
ing_barriers and no more objects inbarriers. Thus only
those objects inworking_barriers and all objects that
have already been output can possibly have a better score
than otop. Hence there are at most ((k – returned –1) +
returned) = (k–1) objects that can have a better score and
we can safely outputotop as one ofk best objects.

It remains to be shown, that phase 3 terminates at all.
But sincemax_lowmonotonically increases and the ob-
jects’ upper bounds inbarriers and working_barriers
monotonically decrease, the number of objects inwork-
ing_barriers and barriers is steadily decreasing during
phase 3. At the latest all lists would definitely be cleared,
if all seen objects would have been completely deter-
mined by sorted or random access. ÿ

During phase 3 we will successively remove barriers by
sorted or random access. We will again chose most prom-
ising candidates for random access. If sometimes no ran-
dom accesses are available, we use sorted accesses and
grant some more random accesses according to our cost-
ratio. If the lower bound of any object gets larger than
max_low, this object becomes our new top object and
max_lowis updated. For all updates we will only focus on
theworking_barrierssubset and remove all objects whose
upper bound sinks below the maximum lower bound
max_low. Whenever objects are removed fromwork-
ing_barriers, new barriers are inserted frombarriers,
until barriers is empty.

The Removing Barriers Phase (Phase 3)
While the number of objects inworking_barriersis (k –
returned) do
1. If (random≥ 1) then

1.1. Perform a random access with respect to any
missing stream on any objecto in the list work-
ing_barriers having the highest upper bound.
Setrandom:= random–1.

1.2. Recalculate the upper and lower bound for ob-
ject o in the index.

1.3. If the new upper bound ofo becomes smaller
than or equalsmax_low, removeo from work-
ing_barriers.

1.4. If the new lower bound ofo becomes larger
than max_low, updatemax_low and otop. Re-
move all objects fromworking_barrierswhose
upper bound is smaller or equalsmax_low.

2. else
2.1. Get a new pair (onew, si(onew)) by sorted access

on streami. Updateonew and its lower bound
low(onew) in the index as shown in phase 1. Re-
calculate the indicator for streami.

2.2. If there is at least one indicator showing a skew,
set random:= random+ costratio.

2.3. If low(onew) > max_lowthen
2.3.1. If upp(otop) > max_low, insert otop in

barriers.
2.3.2. If onew is in working_barriers then re-

move onew from working_barriers, else
removeonew from barriers.

2.3.3. Updatemax_lowandotop with low(onew)
andonew.

2.3.4. Remove all those objects fromwork-
ing_barriers, whose upper bound is
smaller or equalsmax_low.

2.4. Recalculate the upper boundsupp(o) of all ob-
jectso in working_barriers(like in phase 2). If
upp(o) ≤ max_low, remove o from work-
ing_barriers.

3. While the number of objects inworking_barriersis
less than (k – returned) and there are still objects in
barriers do



3.1. Choose any object frombarriers and update its
upper bound (like in phase 2 step 4).

3.2. If the object’s upper bound is larger than
max_low move it from barriers to work-
ing_barriers,else remove it frombarriers.

3.5 TheSR-CombineAlgorithm

Now we are ready to present the completeSR-Combine
algorithm. This algorithm adapts itself closely to any CSA
environment and chooses wisely how many sorted and
random accesses should be performed to optimize the run-
time characteristics. It is also interesting to note that our
algorithm contains previous approaches as special cases:

Proposition 1: (proof omitted)
With N as the number of database objects andn as the
number of streams it can be stated:

a) By choosing the cost-ratio as (n-1) SR-Combine
simulates the Quick-Combine approach (without
heuristic 4).

b) By choosing the cost-ratio less than 1/(n·N) theSR-
Combinealgorithm behaves like Stream-Combine.

To prepareSR-Combinewe first need an initialization
where all data structures and variables are initialized. We
take the input parametersn, k and the monotonic combin-
ing functionF from the user’s query (SR-Combine is de-
signed for any monotonic combining function) and get a
suitable cost-ratio from the service provider (cf. section
4.1). Information about all objects seen by sorted access
has to be maintained: thus create an adequate index struc-
ture (e.g. hash-table) to manage oids and score values
ordered by oids. For each new oid the structure will con-
tain a record of an array of lengthn for its single score
values, its aggregated score’s upper bound and the respec-
tive lower bound. Initialize two variablesthres ∈ [0,1]
with 1 andmax_low∈ [0,1] with 0. Initialize an integeri
:= 1, counters for the number of possible random accesses
random := 0 and the number of objects already returned
returned:= 0. Create an array of lengthn to hold the cur-
rent minimum scores for each stream and initialize
min(si(o)) := 1 (1 ≤ i ≤ n).

Algorithm SR-Combine(F, n, k, cost-ratio)
While less thank objects have already been returned, i.e.
returned< k, do
1. If the index is not empty, iterate the index and get the

best lower bound, i.e.max_low:= max(low(oid)).
2. Compute the thresholdthres by using the minimum

score values of each stream as input forF.
3. Perform the “Pruning Phase”.
4. Perform the “Identifying Barriers Phase”.
5. Perform the “Removing Barriers Phase”.
6. Outputotop as one of thek best objects, increasere-

turned by one, markotop in the index as finished (it
must not be accessed again).

4. Performance Benchmarks

4.1 Determining the Cost-ratio

An important factor to runSR-Combineis the cost-ratio
introduced by [FLN01]. It determines the ratio between
average costs for sorted and random accesses for the spe-
cific application and environment. Of course these costs
depend on various influences, like the speed and average
workload of the central server, network latencies, external
data sources involved and last, but not least the specific
query. Most of these influences cannot be estimated by
the user, but have to be determined by the service pro-
vider. Since services are designed for a specific applica-
tion, it’s generally quite easy to anticipate user interac-
tion. Statistical analysis thus helps to get a set of typical
cost-ratios that can be assigned to different queries.

Generally speaking, different streams may be provided
by different sources or subsystems. Some of them might
not allow random accesses, others probably forbid sorted
accesses and even those, who admit both types may do
this at different costs (in terms of money and/or time).
Hence it may be worthwhile to consider costs separately
for each stream and calculaten specific cost-ratios. In
this way we can optimize choice between both kinds of
accesses in every stream much more precisely. Though it
is not really complicated to refine the algorithm along
these lines (n different counters for sorted and random
access have to be initialized and updated according to the
indicator’s choice of stream), we will assume an average
cost-ratio throughout this paper to simplify matters.

In the following for the average cost-ratio we will use
the experimentally determined factor of 6 SA=1 RA from
our scenario 3 in all experiments for comparability rea-
sons. However, we also tried different variations of the
cost-ratio leading to very similar results (cf. section 4.4).

4.2 Test Environment

For our tests we will focus on bothindirect measures
given by the number of necessary object accesses and
direct measuresconcerning the real-time capabilities of
our algorithm in practical applications. But first we have
to look for some suitable algorithms as a benchmark for
SR-Combine. Of course one candidate is always the naïve
approach that shows its advantages especially in small
databases due to low CPU costs and thus nearly performs
in constant time. Performance tests in our experimental
environment show that algorithms of the Quick-Combine
or CA type optimize the necessary object accesses and
perform best in environments with skewed data. However,
they tend to deteriorate in efficiency, if large amounts of
uniformly distributed data is involved (for n=5, k=25 CA
and QC are already four times worse than the naïve ap-
proach!). Another algorithm is given by the Stream-
Combine or NRA type which behave in the opposite way
and are useful only for uniformly distributed data.



We will show this behavior as an example for the case
of three streams to combine and for different numbers of
objects to return (see diagrams in fig. 3 and 4), but the
results even get worse for higher numbers of streams.
Though all of these algorithms gain their highest perform-
ance only in special cases, we will accept the challenge
and compareSR-Combineto Quick-Combine and CA for
skewed data and to the naïve approach and Stream-
Combine in uniformly distributed environments.
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Fig. 3: Deteriorating efficiency in different environments
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Fig. 4: Object accesses for run-times in fig. 3

In the diagrams we focus on run-times (in seconds) and
object accesses (sorted and random accesses cumulated).
On the left-hand side of the diagrams, the results for uni-
form distributions are given, on the right-hand side results
for skewed data. Please note that though in the uniformly
distributed case CA and Quick-Combine use even less
accesses than Stream-Combine, the run-times are worse,
due to their extensive use of expensive random accesses.

As stated in section 2 the target architecture forSR-
Combine is of the CSA kind. Thus our following tests
have been performed using a Java middleware environ-
ment (Sun JDK 1.3) running on a 600 MHz Pentium II PC
with 256 MB RAM as application server connected via a
100 MBit LAN to an IBM DB2 V7.2 Universal Database

Server for random and sorted accesses. We used JDBC
for all accesses, sorted accesses are performed via Java
result sets, random accesses simulated with use of tempo-
rary tables (which allowed to change to cost-ratio for tests
in section 4.4). The statistically independent data sets for
our experiments containN = 10000 database objects; their
scores are generated synthetically according to different
practical data distributions [GBK00]. Also using the IBM
DB2 Database the cost-ratio between random and sorted
accesses was determined statistically to 6 SA=1 RA with
1 SA≈1 msec (i.e. 1 RA≈ 6 msec).

4.3 SR-Combinevs. others

Having set up the benchmark environment we performed
several tests. The diagrams below show statistical aver-
ages of the experimentally determined run-times and total
numbers of object accesses (SA+RA). Basically we have
set up two scenarios one focussing on uniformly distrib-
uted data, the other one involving skewed data. In both
scenarios we tested all algorithms in the case of three
streams combined (left-hand side) and five streams com-
bined (right-hand side) for different practical values ofk
(k = 5, 10, 25). Again the horizontal line shows our target
of up to 3 seconds run-time [Pop97].
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Fig. 5: Benchmark for uniform data distributions
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Fig. 6: Object accesses for the benchmark in fig. 5



As can easily be seen (fig. 5 and 6), in the case of uni-
formly distributed data theSR-Combinealgorithm per-
forms always much better than the naïve approach and
even always better than Stream-Combine the best algo-
rithm known in this environment. For the tests where
skewed data was involved, we left out the naïve approach,
because today’s algorithms perform much better and the
scale would be affected (the respective runtimes for the
naïve approach are 30 and 50 seconds). As we can see
(fig. 7 and 8), also in the case involving skewed data,SR-
Combinebeats both state of the art algorithms. Please
note that theSR-Combinealgorithm has been run in all of
these tests (uniform and skewed data) always with the
sameset of input parameters (F, n, k, cost-ratio). It has
automatically adapted itself to the respective situation.
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Fig. 7: Benchmark for skewed data
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Fig. 8: Object accesses for the benchmark in fig. 7

SR-Combine in both scenarios obviously not only
essentially improves the run-times, but also optimizes the
total object accesses by wisely choosing the suitable kind
of access. The improvement factor grows with the number
of streams to combine and increasing numbers of objects
to return. It also scales with the size of the database. In the
case of skewed distributions our indicator-based heuristic
even improves Quick-Combine and CA, that are shown to
minimize the number of objects accessed [FLN01].

For skewed dataSR-Combinealready shows real-time
capabilities. This is important, because [GBK00] give
evidence that this is the case in most real-world applica-
tions. However, in the case of uniform data distributions,
SR-Combinestill fails to meet real-time requirements.

4.4 Adaptability and Scalability

We already explained the use of cost-ratios. However,
what influence have different cost-rations on theSR-
Combinealgorithm? The basic idea is that our algorithm
replaces random accesses with some more sorted accesses
in environments where random accesses are expensive. In
the following diagram we see run-times for different da-
tabase sizes with different cost-ratios applied (using de-
lays to slow or speed up accesses). We have taken all the
different cost-ratios from our three application scenarios.
Obviously SR-Combine adapts well to different environ-
ments, thus the total run-time changes only slightly for
different cost-ratios (cf. fig. 9). Besides the algorithm
scales well with growing database sizes. (For space rea-
sons we only present the skewed case. However, the uni-
form case shows a very similar behavior except that the
deviation of times is a little higher).
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Fig. 9: Variations of cost-ratios and database sizes

4.5 Mobile Real-time Considerations

In contrast to e.g. the naïve approach the (topk)* retrieval
model allows the earliest possible output of objects, while
the algorithm is still running. Especially in mobile envi-
ronments this is a useful feature, because the available
bandwidth can be used more efficiently. Besides, we need
response times up to 3 seconds to satisfy service users.
We have seen that in our environments involving skewed
data,SR-Combinehas no problem to meet these require-
ments, but if scores show only a small skew or even uni-
form distributions this may not be the case. However, if
an object is delivered every couple of seconds, psycho-
logically users will not notice the waiting period until all
requested objects have been returned. Thus though the
total running time may exceed 3 seconds the mobile ap-
plication requirements can psychologically still be met.



Fig. 10: Output behavior for different distributions

The diagram in fig. 10 shows the return behavior of
our algorithm for different skews combining five streams
(n=5). If a total of ten objects has to be returned (k=10),
the graphs show how many objects have already been
delivered during each 3 second time-span. Obviously the
total run-times increase towards the uniform case. Al-
though only the very skewed distribution meets the hard
real-time requirements, please note that even in case of
uniform distributions (with a total run-time of 18 seconds)
SR-Combinedelivers some first results early thus improv-
ing the subjective waiting time for users [Pop97]. This
leads to an at least “acceptable” case, for those environ-
ments where run-time constraints cannot be met yet.

4.6 Lessons Learned for Mobile Applications

• Algorithms for (mobile) topk querying have to
focus on both: access costs and CPU costs.
Choosing the right stream for access will also
improve the average run-times.

• Since run-times can be improved by wisely bal-
ancing sorted and random accesses, a competi-
tive algorithm has to self-adapt to different envi-
ronments characterized by different access costs
for different services.

• Psychologically the expected response time is up
to 3 seconds, but if that is not possible, deliver-
ing already parts of the result every 3 seconds
helps to improve subjective waiting times.

Our benchmark results show thatSR-Combinealready
delivers results within the acceptable time-span of 3 sec-
onds for database sizes of 10000 to 50000 objects, if
skewed data is involved and the average cost for a sorted
access is at most 1 msec. We also pointed out that the
retrieval model for successive output at least psychologi-
cally helps in other cases to satisfy users. But what can be
done to further improve the real-time performance in
cases where the requirements for mobile services are not
yet met?

As we stated, a sorted access in our current prototype
system costs about 1 msec. But the access costs and the
cost-ratios between sorted and random access strongly
depend on the kind of service and the system environ-
ment. Thus we have two candidates for improvements.
Either the system’s hardware can be improved guarantee-
ing faster object accesses, or software techniques can be
applied to essentially speed up sorted and random ac-
cesses in the database e.g. by using suitable multi-
dimensional indexes like in [BM+01, BB+01].

We have shown thatSR-Combineessentially reduces
the object accesses and is able to cope with a wide range
of service-dependent cost-ratios. Thus, if a specific ser-
vice is projected and its cost parameters are known, a cus-
tom-made hardware/software selection can be designed to
fit the requirements of both service provider (low hard-
ware costs, high flexibility/extensibility, etc.) and users
(low service costs, low waiting times, etc.). Consider for
example a service provider needing an average environ-
ment like in our uniformly distributed case (e.g.n=5,
k=10, N=10000, cost-ratio 6 SA =1 RA). If a sorted ac-
cess could be brought down to 0.2 msec instead of 1
msec, the service usingSR-Combinewould already meet
real-time requirements.

5. Summary and Outlook

In this paper we addressed the problem of topk query
processing for applications in mobile services. Having
stated the necessary real-time requirements, different ap-
plication scenarios with typical environment variables and
a reference architecture for mobile services, we presented
a new self-adapting algorithmSR-Combinefor top k re-
trieval. We presented benchmarks with current combining
algorithms and investigated scalability and adaptability
for our algorithm. SR-Combine outperforms the naïve
approach and all current algorithms in both object ac-
cesses and real-time capabilities.

We focused on real-time capabilities, that are crucial
for the acceptance of mobile services. Though we did not
meet the hard psychological real-time constraint of at
most 3 seconds response time, the algorithm has proven to
be robust against changes of access costs and using an
advanced retrieval model delivers objects successively.
This is psychologically important especially in mobile
environments, because users get at least some first objects
within the expected response time of 3 seconds. Thus the
subjective waiting time is reduced.

Our future work will transfer efficient topk querying
with SR-Combineinto practical environments like in our
prototypical implementation of [WBK01]. Besides, we
will focus on getting more efficient heuristics to balance
the use of expensive random accesses between different
phases. Though in phase 3 more information is available
and expensive accesses could be used more effectively,
postponing these accesses from phase 1 to phase 3 may
delay an early termination.
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