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Abstract. Standard specifications of telecommunication protocols are mainly
written using informal language. Therefore testing the standard, i.e. the defini-
tion of the core functionality, requires formal modelling of the protocol. In this
article we describe the modelling and verification of a third generation mobile
telecommunication protocol. We take the SDL description of the protocol as a
starting point for our High Level Petri Net model. Since the size of the real-life
protocols is enormous, we apply various abstraction techniques in the modelling
phase. Basing on these and our previous experience, we introduce several heuris-
tics for intelligent protocol modelling. Next we describe in detail the verification
and modelling task, and derivation of the properties to be verified from the pro-
tocol specification. We are able to verify the most essential properties for reliable
data transmission. Before executing the actual verification task, we plan a verifi-
cation strategy, where for example the verification order of the properties and the
appropriate configurations for the protocol and channel components for each run
are considered.

1 Introduction

Today standardization of telecommunication systems is more challenging than ever.
Tight competition on market shares creates great pressures on time schedules. Production
cycles become shorter, although the size and the complexity of systems explode at the
same time.

Specification of a new telecommunication protocol is not an easy job as such. In the
framework created by the underlying technology, the services provided by the mobile
network should be realized in the environment, where complicated algorithms imple-
menting the services are distributed over the network. In standardization process all kind
of problems related to concurrency, reactivity, data consistency, reliability and real-time
requirements can occur. Evaluation and analysis of a concurrent and reactive system
is tedious. A huge number of various computation paths should be considered already
in a case of a small and simple system. For the human mind this kind of “concurrent
thinking" is next to impossible and the tight time shedule makes the task even harder.

Problems met in standardization are directly reflected in the implementation phase.
Implementations are started long before the standardization is finished or even stabilized.
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Therefore the specifications, which the implementations rest on, are often incomplete,
erroneous and ambiguous. Clearly there is a compelling need for a method to test the
specifications before starting the high-volume implementations.

Algorithmic verification provides methods to automatically analyze various compu-
tation paths of a protocol model. One such technique is known as model checking. The
model is a simplification of reality, describing only the relevant aspects and the basic
logical functionality of the protocol. When applied to standardization, the main phases
of the verification would be modelling, verification and reporting. Verification process
is iterative and requires strong teamwork among the verification, standardization and
design people.

In the modelling phase the formal model of the protocol is created together with the
standardization people and designers. Also the requirements to be verified are described
with appropriate formalism and the verification strategy is defined. The verification
strategy is a plan for executing the actual verification task. For example, the verification
order of the requirements is fixed, and the techniques and tools to be used are chosen. In
the reporting phase, in addition to verification results, also proposals for correcting the
errors found could be included. This helps greatly when writing the contributions and
change requests to standardization.

We will describe verification of a mobile telecommunication protocol standardized
by 3GPP (3rd Generation Partnership Project). The protocol specification includes
a formal model of the protocol, described with SDL (Specification and Description
Language) [3]. We converted the SDL description into a High Level Petri Net model
and used the Maria (Modular Reachability Analyser) tool [9] for verification and error
tracing. We describe a collection of abstraction techniques for modelling with High
Level Petri Nets. When constructing a model for large, real-life systems, abstractions
and intelligent modelling play an important role. Since the purpose of model construction
is to facilitate analysis, like verification, the model should be of tractable size and still
present the relevant interesting properties.

The rest of the article is structured as follows. In section 2 we present the modelling
formalism and in section 3 the protocol to be verified. Section 4 describes the model
construction phase, including the verification model architecture and abstractions used in
modelling. Section 5 describes the analysis phase consisting of the requirement definition
and formulation, verification strategy and description of verification results. Conclusions
are finally drawn in section 6.

2 High Level Petri Nets

The basic formalism was developed by Carl Adam Petri in 1962, and the theory has since
been substantially developed. The concept of High Level Petri Nets emerged in the mid-
1980s, and not until recently has a consensus been reached about the way high level
features are to be modelled in the Petri Net world. This exposition is based largely on the
proposed Petri Net standard [5], which is currently in the draft stage in the International
Standards Organization (ISO).

Petri Nets provide an appealing graphical picture of a parallel and distributed system.
System data is represented by places in the Petri Net model, and the system dynamics
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are taken care of by transitions. Only small and medium size systems are amenable to
the graphical Petri Net representation. For larger systems one has to resort to a textual
representation that is usually governed by the tool that will be used in the verification
process.

2.1 Formal Definition

The formal definition of High Level Petri Net Graphs is as follows [5]: A HLPNG (High
Level Petri Net Graph) is a structure
HLPNG = (NG,Sig, V,H, Type,AN,M0) where

– NG = (P, T ;F ) is called a net graph, with
• P a finite set of nodes, called Places;
• T a finite set of nodes, called Transitions, disjoint from P (P ∩ T = ∅); and
• F ⊆ (P × T )∪ (T × P ) a set of directed edges called arcs, known as the flow

relation
– Sig = (S,O) is a Boolean signature. Here S represents the sorts and O represents

the operations on the sorts
– V is an S-indexed set of variables, disjoint from O. This means that every variable

is indexed by the sort that its value has
– H = (SH , OH) is a many-sorted algebra for the signature Sig. A many-sorted

algebra contains a carrier for each sort, and a carrier for each operation. For example,
if a sort is defined as Int, one possible carrier for Int is the set {. . . ,−1, 0, 1, . . . }.

– Type : P −→ SH is a function which assigns types to places. This equation means
that each place is associated with a carrier for the types of data it may contain.

– AN = (A, TC) is a pair of net annotations.
• A : F −→ TERM(O∪V ) such that for all (p, t), (t′, p) ∈ F , for all bindings
α, V alα(A(p, t)), V alα(A(t′, p)) ∈ µType(p). A is a function that annotates
each arc with a term that when evaluated (for any binding) results in a multiset
over the associated place’s type.
• TC : T −→ TERM(O ∪ V )Bool is a function that annotates transitions with

Boolean expressions (transition condition)
– M : P −→ ⋃

p∈P µType(p) such that ∀p ∈ P,M0(p) ∈ µType(p) is a marking of
a system which associates a multiset of tokens of the correct type with each place.

– M0 is the initial marking of the net. It is defined in the same way as a normal marking.

In the above, µA is used to denote multisets of a set A. In a multiset, it is possible to
have a number of elements of the same kind. As an example, if our base set A is {a, b},
then an example of a valid member of the multiset µA would be {3′a, 2′b}. Here the
number left of the -́symbol represents the multiplicity of the object in question.

2.2 A Formal Interleaving Semantics

Petri Net model of a system has dynamics which are brought about by the firing of
transitions. In order to know when a transition may fire, we must define when a transition
is enabled [5].
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A transition t ∈ T is enabled in a marking, M , for a particular assignment, αt, to
its variables, that satisfies the transition condition, V albool(TC(t)) = true, known as a
mode of t iff

∀p ∈ P : V alαt(p, t) ≤M(p)

where for (u, v) ∈ (P × T ) ∪ (T × P ),

– u, v = A(u, v) for (u, v) ∈ F
– u, v = Φ, for (u, v) �∈ F

where Φ is a symbol that represents the empty multiset at the level of the signature,
so that V alα(Φ) = ∅

If a transition t ∈ T is enabled in mode αt, for marking M , t may occur in mode αt.
When t occurs in mode αt, the marking of the net is transformed to a new marking M ′,
denoted M [t, αt〉M ′, according to the following rule:

∀p ∈ P : M ′(p) = M(p)− V alαt(p, t) + V alαt(t, p)

The new marking is a consequence of taking the tuples indicated on the incoming
arc away from the pre-places and inserting the tuples indicated on the outgoing arc to the
post-places. As an applied example from protocol design, a transition could take away
a tuple from a place denoting its input queue and insert the received message (i.e. the
tuple) into a local buffer, also represented as an HLPN place.

An example of the semantics of Petri Nets is given in Figure 1. Transition t1 may
fire in the following modes (note that these are marking dependent). (t1, {x=1, y=3}),
(t1, {x=1, y=4}), (t1, {x=1,y=5}), (t1, {x=1, y=7}), (t1, {x=3, y=4}), (t1, {x=3,y=5}),
(t1, {x=3, y=7}).

A B

1´1+2´3
x y

p1 p2

A={1,2,3,4}
B={3,4,5,7}
<:Z x Z −> Boolean  arithmetic ’less than’
x: A, y: B

x<y

  t1

Fig. 1. Example of the definition of High Level Petri Net semantics

3 Radio Link Control Protocol

UMTS (Universal Mobile Telecommunication System) is a third generation mobile
telecommunication system using WCDMA (Wideband Code Division Multiple Access)
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[12] radio access technique. Adoption of the new radio access technique requires major
changes in the Radio Access Network (RAN). Some of the protocols interacting over
the radio interface have to be modified according to the requirements of the underlying
technique and also some new protocols have to be specified.

Radio Link Control (RLC) protocol is one of the new UMTS RAN protocols.Accord-
ing to the OSI reference model RLC is a data link layer (layer 2) protocol providing data
transmission service to upper layers. RLC was standardized by 3GPP, an international
standardization forum, on March 2000.

The RLC specification [1] defines several modes for data transmission: unacknowl-
edged mode, transparent mode and acknowledged mode. We choose the most complex
one for our verification, namely the acknowledged mode. In acknowledged mode RLC
provides a reliable data transmission over the unreliable radio interface. It uses the un-
reliable data transmission service provided by MAC (Medium Access Control) protocol,
another data link layer protocol. The UMTS data link layer consists of MAC and RLC
sublayers. RLC provides a radio solution dependent reliable link for the user and MAC
controls the access signaling procedures for the radio channel. RLC operates both in
control plane and user plane. In control plane the user of the data transmission service
is the RRC (Radio Resource Control) protocol and in user plane the PDCP (Packet Data
Compression Protocol). The structure of UMTS data link layer and its users is described
in figure 2.

RLC
Control

MAC and 
L1 Control

RLC

MAC

L
3

L
2

L
1

BCCH PCCH CCCH
DCCH DTCH

RLC−URLC−C

BCH PCH FACH RACH DSCH DCH

PDCP

WCDMA L1

Fig. 2. UMTS data link layer.

3.1 Functional Description

Here we will shortly outline the basic functionality of the RLC protocol in acknowledged
mode. For more detailed description, see [1] and [6]. In acknowledged mode RLC
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guarantees reliable data transmission for upper layers by means of retransmission. In
case RLC is not able to deliver the data correctly, the user in the sending side is notified.
Acknowledged mode is used for packet switched data transfer.

RLC connection is established by the RRC protocol. In connection establishment the
configuration parameters defining e.g. the functional mode and polling and status sending
(defining the acknowledgement and resending methods) mechanisms are delivered. RLC
connection can be reconfigured later, during the data transmission phase.

The sliding window mechanism is used in data transmission for flow control. After
receiving a data packet, an SDU (Service Data Unit) from the user, the SDU is segmented
into PDUs (Protocol Data Units) and each PDU is given a unique sequence number.
After this the PDUs are stored in AMD (Acknowledged Mode Data) queue waiting to
be transmitted. At each PDU transmission it is decided whether the polling bit is set.
Polling bit asks the receiving entity to respond with a STATUS message. Poll trigger is
indicated in the RLC configuration messages.

The functionality in the receiving side depends on the status trigger used. Status
trigger regulates the sending of STATUS message. This is indicated in the RLC config-
uration message. If the received PDU is inside the receiving window it is stored in the
assembly queue. Each time a new message is added into the assembly queue, we check
whether it is possible to assemble a complete SDU. If this is the case the assembled
SDU is passed to the receiving user process. On the other hand, if the receiving RLC
notices a missing PDU a STATUS message is generated to the sending RLC asking for
a retransmission.

In the case of unsuccesful retransmission the SDU discard procedure is initiated
at the sending end. The procedure asks the receiving entity to move its receiving win-
dow forward and restart accepting messages. After sending the MRW (Move Receiving
Window) message the sending RLC starts a timer. If no response (MRW-ACK) is re-
ceived before the timer expires, the reset procedure is executed. MRW message can be
retransmitted a fixed number of times before triggering the reset procedure.

The reset procedure is similar to the SDU discard procedure. A RESET message is
transmitted up to a predetemined maximum number of times and if no RESET-ACK is
received in response, the sending user is informed of an unrecoverable protocol error. In
a succesful case the internal RLC data buffers are flushed and the sequence numbering
is reset. The user is informed about SDU transfer acknowledgements (positive and nega-
tive), resets and unrecoverable protocol errors by means of messages that are considered
to be in-stack communication.

4 High Level Petri Net Model

In the modelling process of the RLC we chose to construct a Petri Net model for the
separate entities shown in Figure 3. First, the SDL description of the RLC was converted
into High Level Petri Nets. This process covered the sending and receiving RLC. Next,
a model for the channel connecting the two RLC entities was built. Finally, the Petri Net
models of the sending and receiving user processes, corresponding to the RRC/PDCP
protocol (and the property to be verified) in the protocol stack, were added to the model.
Although the conversion was done by hand, the rules used (which are discussed in the
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following section) are deterministic, and in a later release of the Maria analyzer, the
conversion will be automatic as there will be an SDL front-end available.

SENDING
USER

SENDING
RECEIVER

CHANNEL RECEIVING
RLC

RECEIVING
USER

Fig. 3. Architecture for the verification process of the RLC

4.1 RLC Protocol

In the modelling process of the RLC we found a number of modelling principles useful
in minimizing the resulting reachability graph’s size. We divided these principles into
two categories: the category of generic protocol modelling principles and the category
of protocol specific modelling principles. In the following list, we discuss the generic
protocol modelling principles.

1. To create a link between a protocol’s description in SDL and the Petri Net model,
each SDL statement should be labelled with a program counter.

2. To aid the analysis process, a protocol’s transmission and reception windows should
be parameterizable. The model specific errors are often caught with transmission
window size one, whereas a protocol’s logical errors are caught most often with
transmission window size 2 or 3 [2]. If a protocol relies on retransmissions, the
maximum number of allowed retransmissions should also be made a protocol pa-
rameter, which is included in the formal model.

3. To verify SDU segmentation and reassembly, the sizes of PDUs and SDUs must be
modified. The correct functioning of segmentation and reassembly can be checked
either if several SDUs can fit into one PDU, or vice versa. In our case, we chose to
use SDUs of length 3 and PDUs of length 2.

4. One should differentiate between in-stack communication (i.e. between layers (N)
and (N+1)) and communication among peer entities. An example of in-stack com-
munication is the operation where the transport layer element ((N+1)-entity) orders
the network layer element ((N)-element) to deliver a packet. A distinguising feature
of in-stack communication with respect to peer-to-peer communication is that the
communicating entities in in-stack communication reside in the same piece of hard-
ware whereas peer-to-peer communication involves entities in different pieces of
hardware. Normally a specification does not elaborate on in-stack communication,
but it is often considered immediate and loss-free. On the other hand, peer-to-peer
communication should be modelled so as to allow transfer delay, message loss, du-
plication and reordering. Moreover, the former type of communication should be
prioritized over the latter.
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5. If the protocol involves long sequences of local actions (i.e. actions involving no
communication or other parallel activity), the state space can be greatly reduced
by adopting the resource place abstraction [10]. With this abstraction, local SDL
sequences may be made atomic. Interleaving is allowed only in case the statement
involved communication.

6. The lengths of message queues between two RLC entities and between a user entity
and RLC entity should be chosen to minimize state space. As in-stack communi-
cation is loss-free and immediate, a queue of length one between a user process
and a peer entity should be chosen. As for peer-to-peer communication, the input
queue should be at least twice the size of the transmission window to allow message
duplication and reordering.

7. The timers in the model should be abstracted to two values — on or off. This
Boolean abstraction for timers increases the size of a subgraph of the reachability
graph. With Boolean abstraction, all n! timer firing orders are explored. However,
we have found that the inclusion of local time in the Petri Net model increases the
reachability graph’s size even more. This timer abstraction is completely analogous
to abstracting the set {0, 1, 2, 3, . . . } to two values {0, > 0} as an application of
abstract interpretation.

8. If the underlying channel type is reordering, it is wise to use an implicit scheduling
mechanism in the model. A peer entity first reads all the messages from its input
queue and reacts to each one in succession. When all messages have been processed
by this peer (and some messages were actually transmitted in return), the “turn”
is given to the other peer. As the channel is reordering, it may be modelled as a
High Level Petri Net place. The other peer may read the messages from this place
in any order. Hence, the non-deterministic behaviour of the protocol is sufficiently
retained.

In addition to these protocol independent modelling principles, we employed one
RLC specific abstraction. The RLC can be configured to run in several different modes.
The three parameters that define the behaviour of RLC are status trigger, poll trigger
and discard trigger. For simplicity, we used a constant set of triggers. Status trigger
is missing pdu detected, poll trigger is every poll pdu, and discard trigger is maximum
number of retransmissions.

In the RLC model, every Data PDU had its poll bit set, the receiver replied with a
STATUS message each time it detected that it had missed a PDU, and the SDU discard
procedure was begun after a maximum number of retransmissions of the PDU. In our
case, this maximum number of retransmissions was zero, indicating that the SDU discard
was begun immediately if we did not receive an acknowledgement of the data PDU.

The other RLC specific modelling choice involved the STATUS PDU. The STATUS
PDU in RLC is rich in meaning since it encodes the following message types in a
single PDU: ACK, WINDOW, MRW, MRW ACK. We chose to use a single message
type in each STATUS message although nothing prevents one from using several in
a single message. This abstraction brought some false negative acknowledgements to
the protocol’s execution, as a STATUS ACK was disregarded during an SDU discard
procedure. In other words, even though the recipient successfully acknowledged a PDU
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and delivered the related SDU, the sender would disregard the ACK if it had already
commenced the SDU discard procedure.

4.2 Channel Types

The verification process considered realistic and pessimistic models of communication
channels. In our work, three channel types were chosen to be taken into the analysis. The
first was a realistic assumption of the radio interface, a channel that may lose messages
but preserves order. The second was a pessimistic view of the radio interface, namely a
lossy and reordering channel. The final one was the worst possible channel type, a lossy,
reordering and duplicating channel.

In the actual Petri Net model, the channel functionalities were integrated into the
sending and receiving RLC entities. They were not included in a separate channel process
as Figure 3 may suggest.

4.3 User Processes

The user processes define the way in which connection is set up and controlled. Before
the RLC process is initialized, it is assumed that the user process (layer (N+1)) had
already reserved a radio link for it. This assumption is valid both in the sending and
receiving end. It is then a justified action to send the connection-initiating message to
both RLC entities in a single transition. The normal behaviour of the user process is to
send and receive data as well as both positive and negative acknowledgements for the
data.

In the event of a recoverable error, the sending RLC tells the user process that it has
successfully resynchronized itself with the receiving RLC. The user process will then
continue sending SDUs as before.

In the event of an unrecoverable error, the sending RLC informs the user process that
both RLC entities should be terminated. The user process will reset both RLC entities
and subsequently restart the data transfer.

It should also be noted that our user process does not configure the underlying RLC
on-the-fly, although this capability exists in the standard.

4.4 Modelling with Maria

Maria was chosen as the analyzer for three reasons: First, Maria contains built-in data
types which are amenable to protocol modelling. These include queues, unions, and
structures. PDUs with several data fields can be modelled exactly as each PDU can be
declared as a structure in Maria language. Moreover, several PDU types can be grouped
together under a single PDU type which is declared as a union of the aforementioned
structures. Naturally, a communication channel is declared as a queue containing several
messages of the just mentioned union type. With Maria, one can also test a queue for
emptiness with a single operator.

Secondly, Maria is one of the most powerful Petri Net analyzers currently in exis-
tence, with the capability of handling state spaces up to 200 million on a fairly standard
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stand-alone PC. The power of Maria may be increased even more with parallelized
reachability analysis which is now a feature of the tool.

Last, the Maria toolset is an open development environment, where a number of
language specific front ends are envisaged to be included. Two such front ends are
SDL front end and Java front end. The SDL front end will be able to perform the
translation process from SDL to Maria using the principles explained in Section 4.1
automatically. At this point the development of modelling methodologies in the Maria
project is advancing faster than the development of the tool, thus forcing one to make
some translations manually.

5 Analysis

5.1 Requirements

The specification defines several services and functions for the RLC protocol. Our model
implements acknowledged data transfer service and notification of unrecoverable errors.
The specification refines the services to functions, which are needed to establish and
support the service. However, the list of functions in the specification is deficient and a
more exhaustive list can be found e.g. in [6]. From the following function list we derived
the requirements for the verification task (for the functions present in our model):

Error detection and correction functionality is provided by using the retransmission
mechanism and SDU discard procedure.

Duplicate detection guarantees that each SDU is delivered to the user at the receiving
side at most once.

In-sequence delivery of SDUs preserves the order of SDUs in transmission.
Freedom from deadlocks is a generic requirement for all models

The three first mentioned ones constitute the requirement of realiable data transmis-
sion. The model contains an abstraction which could result in a false negative acknowl-
edgement of an SDU. This property causes the sent and received data streams to be
unsynchronized, but it is still compatible with the requirements in this chapter. Each of
the properties is more carefully defined in the following.

– error detected if the sending RLC is unable to transfer a PDU after predefined
number of retries then the protocol will flush the SDU that the PDU was part of
and inform the user of SDU’s loss. This property ensures that when a positive
acknowledgement is received, the transfer really occurred. It is allowed that a false
negative acknowledgement occurs, but data loss is never ignored.

– data integrity: the protocol does not duplicate data or lose data without issuing
an error message to the user. Note that data corruption is not an issue as lower levels
detect corruption and delete corrupt data, collapsing this case to data loss. The
difference between this and the error detected property is that this property will
fail if data that has been acknowledged as transferred is lost. The error detected
property is assumed to hold before this property can be verified.
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– data sequence: SDUs are delivered in the same sequence as they were sent or in
case of a lost SDU an error message is generated to the user. This assumes also that
error detected property holds.

– no deadlock: the system is free of illegal deadlocks, where a deadlock state is a
state without following states.

5.2 Expressing the Properties

Data independence [11], [13] is a syntactic property of a system, stating that the values
of certain data items do not affect the system’s behaviour. Thus from the system point
of view these data values can be arbitrarily changed as long as the change is consistent
for corresponding values.

A system is data-independent with respect to a variable x if the only operations that
x can be subjected to are:

– receiving its value from an external source
– sending its value to an external target
– copying its value from another data-independent variable

Especially x cannot be used for control flow decisions. By examining the RLC v. 3.5.0
specification, it is obvious that the RLC protocol is data-independent with respect to the
user data.

Properties can be expressed as automatons representing the higher protocol layers
of both peers possibly augmented with additional simple properties. The basic function
of a user automaton is to provide a sequence of data items and also act as a data sink.
Our adaptation of property encoding is similar to Wolper [13], but is based on Kaivola
[7].

For the rest of the chapter the following naming is used: sent is the sequence of
SDUs that is transmitted by the sending RLC peer, where a1a2 . . . ana are individual
SDUs of that sequence and na is the length of the sequence. Likewise received is the
sequence of SDUs that is sent by the receiving RLC peer to the receiving user, where
b1b2 . . . bnb are individual SDUs of that sequence.

Error detection. The RLC protocol has some predefined upper limit for resends of a
single PDU after which the upper layers are informed of SDU loss. The
error detected requirement can be expressed by requiring that each sent SDU is either
positively or negatively acknowledged (ack or nack) and that a positive acknowledge-
ment actually corresponds to a correct transfer. Note that a false negative acknowledge-
ment is considered to be acceptable behaviour. Since RLC is data independent, it is
sufficient to create a tester automaton that sends only one data value, zero, repeatedly
and keeps track of the acknowledgements that are given back from the RLC. As the
interface between RLC and the tester automaton is assumed to be stop-and-wait, each
SDU is acknowledged before the next SDU is sent.

Note also that this assumes that the model can relate acks and nacks to a particular
SDU. This is done by associating each SDU with an identifier that must be unique for
SDUs that are being transferred by the protocol. This identifier is passed along with the
protocol messages corresponding to ack and nack.
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Data integrity. If no error detection is present, the requirement data integrity can be
expressed as follows: at any moment the SDU sequence received is a prefix of the SDU
sequence sent.According to Kaivola this is achieved when the following property holds:
if sent belongs to the ω-regular language 0∞ · (1 ·2∞∪ ε) (where x∞ is a shorthand for
x∗ ∪ xω) then received belongs to the same language and the protocol has not issued
an error message. If there is a violation of the safety requirement, then there must be
some item in sequence sent that is not in received or |received| > |sent| indicating
duplication or loss.

If the protocol does not satisfy data integrity, then there is a sequence of items
in received that is not a prefix of sent. At some point of the sequence at index n where
an �= bn or an does not exist (na < n).

It may be that this is because the protocol has erronously duplicated a data item
of sent that has been sent earlier on. This means that the smallest differing nth item
on the received side is equal to an earlier n′th (1 ≤ n′ < n) data item of sequence
sent and different from the nth item of sequence sent. Due to data independence the
values of sent and corresponding values of received can be replaced and the produced
sequences (sent′ and received′) represent an execution of the protocol. The data values
are changed following these rules:

– globally replace the first n′− 1 data items of sent with zeroes (this propagates over
to received as well)

– globally replace the n′th data value of sent with 1
– globally replace the rest of data values in sent with 2

Now it is clear that sent′ belongs to the w-regular language 0∞ · (1 · 2∞ ∪ ε), but
received′ does not, because there are more than one 1 value.

The second possibility of an execution that does not satisfy data integrity is
similar to the previous case, but the differing element bn, where an �= bn does not occur
in the sent sequence (or there is no element an in sent at all). This time change the data
values to form sent′ and received′ as follows:

– gloablly replace first n− 1 values values with 0
– gloablly replace the nth item in sent with 1 (only if an exists)
– globally replace the rest of data values in sent with 2

Again sent′ belongs to the w-regular language 0∞ · (1 · 2∞ ∪ ε), but the nth item in
received′ must be different than any value that occurs in the first n elements of sent′

and nth values of both sequences are different by assumption. Thus the only possible
value must be 2 and received′ cannot belong in the same language as sent′.

We assume above that the protocol attempts to resend a PDU until the send eventually
succeeds and that the channel is fair so that the resent PDU is eventually transferred. In our
case the protocol gives up retransmission after some predefined number of tries, discards
the related SDU and reports of SDU loss. This is considered to be legal behaviour. In
order to take this into account, the accepting language must be modified so that a not-
acknowledged message for a certain SDU is considered to be equal to succesful transfer
of that SDU.

If positive acknowledgement for data i is called acki and negative acknowledgement
for data i nacki then the accepting language can be rephrased as: (0 ·ack0 ∪nack0 ∪ 0 ·
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nack0)∞ · ((1 ·ack1∪nack1∪1 ·nack1) · (2 ·ack2∪nack2∪2 ·nack2)∞∪ε). The first
possible outcome for sending data i is that it is transferred correctly and acknowledged,
the second possibility is that no transfer is completed and a negative acknowledgement
is given. The third possibility is that negative acknowledgement is given, but the data
is actually transferred. This may occur if a timer on the sending side fires before the
receiving peer has been able to acknowledge the transfer. This false negative is acceptable
behaviour and can be considered equal to a successful transfer of data i.

This relies on the possibility of relating acks and nacks to a particular SDU.
The second assumption is made for resetting of the tester automaton. If the RLC pro-

tocol notices a fatal error in transferring signaling messages, then the protocol performs
a hard reset. This must also be reflected on the user automaton side: protocol hard reset
also resets the tester automaton to its initial state.

ack 0

nack 0

nack 0

?0 ?1 ?2!0

!1

!2

nack 1

ack 1

nack 1

ack 2

nack 2

nack 2

Fig. 4. Tester automaton for data integrity property.

The tester automaton for this property is given in figure 4. Sending and receiving are
denoted by ! and ? respectively. If some action is not possible, the automaton deadlocks
signalling an error. For clarity the picture does not show the hard reset transition to the
initial state, which is possible in all states. It should be noted that this tester automaton is
connected to both the sending and the receiving RLC in the Maria model. This choice was
made since the language containment problem (solved by the single tester automaton)
would have been much more complex to solve if there had been two separate user
processes on top of sending RLC and receiving RLC.

In-sequence delivery. Property data sequence can also be expressed using the same
property as in case of data integrity. If some data elements are not delivered in
sequence, then there must be a situation where the sent and received elements differ
because the sent an is overtaken by one or more sent elements and thus an �= bn. an
appears on the received at n′ > n.

The data values can be changed using the rules as in the second case of
data integrity and once again sent′ and received′ differ.

It is also possible to express the data sequence property using language 0∞ · 1∞
with only two data values.

Freedom from deadlocks. Both the data integrity and data sequence properties
are verified by having user automatons interact with the RLC protocol. The behaviour of
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Table 1. State space sizes for analysis. ch 1 stands for lossy channel, ch 2 stands for lossy and
reordering channel and ch 3 stands for lossy, reordering and duplicating channel. PROP 1 stands
for ERROR DETECTED and PROP 2 for DATA INTEGRITY

ch 1 ch 2 ch 3
PROP 1 23 825 states, 32 842 arcs 24 483 states, 33 612 arcs 147 070 states, 193 628 arcs
PROP 2 65 636 states, 89 883 arcs 66 398 states, 90 757 arcs 393 621 states, 516 560 arcs

the automatons consists of providing the protocol with some data for transfer, receiving
the transferred data, and the related acknowledgments of data transfer. This behaviour is
repeated forever and is only stopped if an undesired message is received, which causes
the automaton to deadlock. A hard reset of the protocol causes the user automaton to
reset to its initial state, but execution is otherwise not interrupted.

If the analysis stops in a deadlock state that does not belong to the states of the user
automaton, then that state must be in the RLC protocol. Thus a successful analysis with
any of the presented automatons implies freedom of deadlocks in the RLC protocol.
Automatic deadlock and error state detection are provided by the Maria model checker.

5.3 Verification Strategy

Before starting up the actual verification task, we divided the whole task into subtasks
of manageable size and defined the verification strategy. Successful verification of some
properties can be used as an assumption for subsequent verifications. Also, for each re-
quirement to be verified, we considered the appropriate channel model and configuration
of the protocol.

As described in the previous section, we used one tester automaton for the verification
of several properties. The tester automaton we have constructed relies heavily on the
idea that the protocol acknowledges all SDUs (ack or nack) to the user. Therefore we
verified the error detection property first and used the result as an assumption for
later verifications. Also, validity of the no deadlock property is a prerequisite for all
our verification runs. All errors appear as deadlocks in the verification. Vice versa, this
means that a successful verification of some property implies always the validity of the
no deadlock property.

In the first verification runs we used reliable channel and the minimum configuration
of the protocol model. In the minimum configuration there are no resendings of PDUs,
mrw messages or reset messages. Window size at both the sending and receiving sides
is limited to one.

After several iterations (verifying and correcting the model) we were able to verify
the error detection property with a lossless channel. In the next phase we verified
the same property with the lossy channel, which is the relevant one for this property.

We started also the verification of thedata integrityproperty with reliable channel.
We were able to verify the property with the lossy and reordering channel, but when
augmenting the channel model with duplication generation, we ended up with state
explosion. To overcome this reversal, we restricted the state space by modeling the
sending and receiving as atomic actions and then introducing an implicit scheduling
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mechanism for them. We have described the mechanism in section 4.1. Finally, we
were able to verify also the data integrity property with the lossy, reordering and
duplicating channel.

5.4 Results

Our verification effort did not uncover mistakes in the RLC protocol for the chosen
parameters. Instead, we could prove the error detected, data integrity,
data sequence and no deadlock properties. This was to be expected since the pro-
tocol is, after all, fairly standard and some verification effort has already been invested
in it [8], [4]. The only significant difference between a standard sliding window proto-
col implementation and the RLC was the inclusion of SDU discard functionality. The
verification runs showed that SDU discard functionality did not introduce errors into the
protocol. The results of the verification runs are shown in table 1. Verification was done
by first executing the system with the user automaton for error detected. The last three
properties could then be verified using a common user automaton. It is worth mentioning
that the original versions of SDU discard did contain errors, but these were corrected
during the standardization phase and before the Release 99 of RLC specification.

To gain more certainty of the correct functioning of the protocol, it is necessary to
perform the analysis for transmission window sizes greater than 1. In our model the
window size is a parameter, which was initially 2. Since we are dealing with a real-life
protocol with a huge state space, we encountered, as already expected, a state explosion.
To be able to proceed we had to restrict several parameters. In the next phase we will
remove the abstractions step-by-step and thus increase our confidence to the verification
results.

6 Conclusions

Modelling and verification of telecommunication protocols can be used as a method
to simulate and test the standardized protocol specification before starting up the high-
volume implementations. To keep the focus in the core functionality and especially to
be able to manage with the verification task, the abstraction level of the model should
be high enough. On the other hand, the abstractions should not violate the model with
respect to the properties to be verified. This requires intelligent modelling, where known
heuristics can be used.

We have modelled the 3GPP RLC protocol and verified the most fundamental prop-
erties for establishing the reliable transmission of user data. The properties are defined
based on the standardized protocol specification. We have used the SDL specification
included in the standard as a starting point for our High Level Petri Net model. The
protocol model was extremely large, so we have used various types of abstractions to
alleviate the state space explosion. Based on this work and also on our earlier experi-
ence we have introduced some heuristics to prepare ground for an intelligent modelling
method. Part of the heuristics are specific for the underlying modelling formalism, but
some of them can be applied more generically.
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