C Wolf — A Toolset for Extracting Models from
C Programs*

Daniel C. DuVarney' and S. Purushothaman Iyer?

! Dept of Computer Science, SUNY at Stony Brook, NY, 11794-4400
dand@cs.sunysb.edu
2 Dept of Computer Science, North Carolina State University, Raleigh, NC
27695-7534
purush@csc.ncsu.edu

Abstract. We report on the design, implementation, and use of C
Wolf, a toolset which extracts finite labeled transition systems from
C programs. The extraction process is guided by user input on how
a program should be abstracted, and what events should be made
observable to the user. The output is an abstracted model suitable
for input to the Concurrency Workbench. Additionally, facilities are
provided to carry out simple observational equivalence-preserving
transformations which reduce the size of the generated model. Finally,
we report our experiences in using the toolset to analyze the GNU
i-protocol (Version 1.04) and the BSD ftp daemon (Version 0.3.3).

Keywords: Abstract Model checking, C programs, Concurrency Work-
bench, FDT for network protocols, Verification and validation, Software
tools.

1 Introduction

The past twenty years have seen great strides in the use of model checking to
validate finite state designs of programs and circuits. Due to the impressive
results that have been achieved in these limited applications [9], there have
been efforts to apply model checking to software systems and to infinite state
designs [4J6]. The former style of work is based on abstracting programs to arrive
at finite state designs, which can then be model-checked. The latter, however,
depends upon considering decidable properties of certain subclasses of infinite
state systems. In this paper we address the approach of abstraction.

We consider the problem of generating finite labeled transition systems from
C programs, with a view towards reasoning with the abstracted version in the
Concurrency Workbench [34]. Such an approach would also allow one to relate
designs and implementations by comparing designs against abstractions of im-
plementations. The utility of finite-state abstractions of programs is supported

* Supported in part by ARO under grants DAAG55-98-1-03093 and DAAD-19-01-1-
0683, and by NSF under 0098037

D.A. Peled and M.Y. Vardi (Eds.): FORTE 2002, LNCS 2529, pp. 260-275] 2002.
© Springer-Verlag Berlin Heidelberg 2002

C Wolf — A Toolset for Extracting Models from C Programs 261

Part A: A C program Part B: Minimized LTS
#include<stdio.h>

int main(){
int state = 0; 0 D ‘a
char ch;
while (1) {
ch = getc(stdin);
if (ch == ’\n’ || ch < 0)
return O;
switch (state) {
case O:
if (ch == ’b’) {
++state;
} else if (ch !'= ’a’) {
return 1;
¥
break;
case 1:
if (ch !'= ’b’) {

return 1; 3 D
}

break;

accept

Unlabeled transitions denote 7 —
silent action

}
1

Fig. 1. A simple C program to recognize a*b* and its minimized LTS

by the observation that a process in a concurrent program has a finite-state
synchronization skeleton with details of sequential computation filled in. In par-
ticular, early work on model checking [8] was geared towards reasoning about
these finite-state synchronization skeletons.

Reverse-engineering the finite state machine that forms the synchronization
skeleton of a process involves appropriately abstracting the sequential computa-
tion section and labeling the events of interest in the extracted machine. Building
such models is typically done by hand, as in [14]. Lately, there have been a num-
ber of tools built to make this process easier [3[T6I2T26/3TI36J37]. In this paper
we report on our experience in developing C Wolf (a model-extraction toolset),
and our experience in using it to analyze a version of the GNU i-protocol and
the Unix ftp daemon. C Wolf works with C programs and provides facilities for
a user to abstract integer variables of a program, in a semantically sound way.
Given user-specified information on the observable actions of a program, C Wolf
will generate an abstracted labeled transition system (LTS), which can then be
passed to the Concurrency Workbench of New Century [34] for further analysis.
For instance, the C program given in Figure [[{A), when abstracted appropri-
ately, yields the LTS in Figure [(B). We will use this program as a running
example through the rest of the paper.

The main contributions of our work are:

262 D.C. DuVarney and S.P. Iyer

— Design and implementation of the C Wolf toolset, which allows a user to
abstract C programs and to observe events of interest to the user. In par-
ticular, C Wolf offers a number of optimizations to reduce the size of the
system generated with respect to trace and observational equivalence. The
generated system can be minimized further, if necessary, and analyzed using
the Concurrency Workbench.

— Case studies of usage of the toolset in abstracting source code, in C, of the ftp
daemon and GNU i-protocol. The case studies illustrate (a) that C Wolf is
practical and (b) that simple, though not necessarily complete, observational
equivalence-preserving transformations have the greatest effect in reducing
the size of the models generated.

Related Work: There has been a great deal of interest lately in software model-
checking. Some of the tools developed to date use abstraction while others use a
form of run-time monitoring. They can be further divided into several categories,
as described below.

Data abstraction: Apart from our work (which falls into this class), Bandera[l6]
T0] is a tool that uses user-defined data abstraction to generate models from
Java programs. Bandera has a generic scheme for users to express abstractions,
and then apply a particular abstraction to a specific program. Furthermore,
Bandera employs software-slicing techniques to remove parts of the program
that are irrelevant to establishing properties of interest, which are themselves
expressed in linear temporal logic. Finally, Bandera can generate models for
several reasoning systems including SPIN [24] and SMV [32/[17].

Predicate abstraction: The predicate abstraction approach collectively abstracts
all program variables by replacing them with a set of boolean variables. The
SLAM project[1l23] automatically generates and refines sets of predicates based
upon a property (expressed as an automaton) that the user wishes to check.
Given a set of predicates, each program point can be characterized by the sub-
set of chosen predicates (or their negations) that definitely hold at that point.
Those program points where such a characterization is not possible lead to
non-deterministic choice points. The result is a non-deterministic schema over
boolean variables, one for each predicate of interest, which can be represented
as a BDD. The SLAM project has several other tools to analyze/model-check
these boolean programs. To date, the SLAM group has used this tool to identify
bugs in device drivers for Windows NT.

Metacompilation: In this approach, the compiler for a programming language
is extended with a user-customizable language, or table, which can be used to
specify the model to be generated in the input language of a model checker.
Two tools that belong to this category are FeaVer/AX][2627] and xgcc[7IT8J3T].
In both of these cases it is up to the user to generate the models that are believed
to be an appropriate abstraction of a program.

Specification-less approach: In this approach, specific properties of concurrent
programs, such as deadlock, are targeted. To show these specific properties slicing
is typically used. This approach has been used in Java PathFinder [3723]5], and
JCAT/YAV[I3128].

C Wolf — A Toolset for Extracting Models from C Programs 263

Runtime monitoring: This approach does not use abstraction at all. The ap-
proach is based on instrumenting a program, for a specific property of interest,
with additional code. The instrumented code, when run, will monitor the pro-
gram execution such that if an erroneous state is reached then appropriate action,
such as stopping gracefully or logging data, can be carried out. This approach
has been used by Godefroid in Verisoft[2002T22] and by Stoller [30].

Road map of the rest of the paper: In Section[2lwe will provide an overview
of our system, in Section Blthe language for conveying abstraction and label maps
to the toolset is discussed, in Section[d we will provide details of the techniques
we use for model-generation, in Section Bl we discuss optimization, and finally in
Section [0l we will present the result of our case studies. We then conclude with
a discussion of our contributions and plans for future work.

2 Overview

C Wolf generates a labeled transition system from (a) a C program, (b) an
abstraction mapping and (c) a list of observables. This process is performed by
a small set of components, each of which carries out a specific task. The main
components of the system and their functionality are as follows (see Figure 2] for
a bird’s eye view of the system):

cwce — A compiler front end for C, which translates an input program to C
Wolf intermediate (CWI) format. cwcc is based on the ckit [30] front end.

cwld — A linker to combine several files in CWI format.

cwmb — The model-generator component. It takes as input (1) a program in
CWI format, (2) an abstraction map describing user-defined abstractions,
and (3) a label map describing what events need to be made observable. The
output is a file containing a labeled transition system, which can be loaded
into the Concurrency Workbench for further processing.

2.1 Input Restrictions

While the low-level features of C make it useful for systems software develop-
ment, these same features complicate task of verification. Pointers allow direct
manipulation of a program’s memory and the heap space, and allows for aliasing
between program variables. We deal only with cases where the aliasing involves
stack-allocated variables and where the relationship can be determined at model-
generation time. Other forms of aliasing are not detected at this point and are
all abstracted to a point domain. We follow a similar strategy with function
pointers.

A second potential problem is recursion. We do not reject a recursive program
a priori under the assumption that the abstraction employed could lead to a finite
state model. However, we do aid the user by optimizing all tail calls.

264 D.C. DuVarney and S.P. Iyer

Query about LTS

TRUE or FALSE

Picture

Abstraction
Map

cwmb
Model
Builder

cwee
Compiler

cwee
Compiler

cwee
Compiler

cwilow

Control
Flow

Viewer

CWI Code CWI Code

CWI Code

Graph

\ daVinci

Picture

Fig. 2. System architecture at the executable-component level.

Our model does not directly include concurrency, so the use of threads is not
allowed. However, models for a process of a distributed system can be computed
using our toolset, followed by their parallel composition in the Concurrency
Workbench. Our design decision follows the design of C, where concurrency
primitives are not part of the language but are part of a library. Thus, it is
the user’s responsibility to model the communication mechanism directly in the
Concurrency Workbench.

Finally, signal and longjmp are not currently supported since they interrupt
the flow of control.

3 Abstraction and Observable Events

cwmb, the C Wolf model builder, accepts a CWI file as input, and two other
additional files. The first file, the abstraction map, specifies what abstractions
to apply to each variable. The second file, the label map, specifies how to label
transitions.

Our approach to abstractions focuses exclusively on integer variables. The
reason for this is that in embedded systems and communications protocols, the
variables that embody the high-level state of the system are almost always en-
coded as integers. For example, a program implementing an extended finite state
machine (EFSM) might use an enumeration to represent the control states of the
EFSM. The abstraction map will be used to specify how each integer variable
in the program should be abstracted.

The C Wolf system provides a set of predefined abstractions. Although the
set of abstractions is fixed, most of them are parameterized, increasing their flex-
ibility. The syntactic terms for the available abstractions are top, mod, part,
minmax, and free. They are listed in table [Tl

C Wolf — A Toolset for Extracting Models from C Programs 265

Table 1. The set of available abstractions.

Syntax Description

top All values are abstracted to a single value T.

minmax Values are abstracted to an upper and lower bound (I, h).

mod (k) Values are abstracted to a set of remainders modulo k.

part(ai,az,...ax)|Values are abstracted to a partition of the set of integers.
The partition is [—o0...a1 —1],[a1...a2 = 1],...[ak—1...ak —
1], [ak . .. o).

int The value is either a precise integer or T.

T array The value is an array of values of abstracted type 7, where
7 € {int,bool, pointer,part(ai,az,...ar)}.

free The abstraction is chosen dynamically (assuming the abstrac-
tion of the latest assigned value)

bool Values are true, false, maybe

The simplest abstraction is top. Applying top to a variable x abstracts it
away entirely. No information is maintained about the state of x.

The parameterized abstraction mod maintains a set of remainders under a
divisor k. It’s main use is for array indices. For example, consider a variable x
whose abstract type is mod(4). If it has an abstract value of {2, 3}, then we can
infer that the value of x is in the set {2+4-¢|i>0}U{3+4-i|i>0}.

The parameterized abstraction part partitions the integers into a set of dis-
joint intervals which cover the set of integers. part is the workhorse abstraction,
which typically sees the most use. part can be used to isolate particular values
of interest. For example, if we are interested in following the values 3, 4, and 5,
but don’t care about other values, the abstraction part(3,4,5,6) will suffice by
using a bit-vector to track whether x’s value is less than 3, equal to 3, 4, or 5, or
greater than 5. For example, if the variable x has abstract type part(3,4,5,6)
and abstract value {[4,4], [6,00]}, then its concrete type could be any value in
the set {4,6,7,8,...}.

The abstractions int, minmax and free are risky because they may result in
a huge number of states. Their main intended use is internal. However, we have
left them available to the user for experimental purposes, to be used at one’s
own risk.

The minmax abstraction maintains an upper and lower bound on a variable’s
set of possible values. The bounds are kept as tight as possible, which can cause
state explosion in many cases, such as when a variable is used as a counter for
an iterative loop.

The int abstraction tells the system to compute a precise value where pos-
sible, and to T otherwise. It can be useful where a precise value of a particular
variable is needed, but shares the same dangers as minmax.

The final abstraction is free, which is not a new abstract type, but is instead
used as a directive indicating that the abstract type of the variable should be
dynamic. Whenever a variable of type free is assigned an abstract value then

266 D.C. DuVarney and S.P. Iyer

fsm.am fsm.lm
file "fsm.c" { exit == 0 => accept;
fun main (O : top { watch (main:ch == 97) => ‘a;
var state : part(0,1,2); watch (main:ch == 98) => ‘b;
var ch : part(0, 10, 11, watch (main:ch < 0) => ‘eof;
97, 98, 99); watch (main:ch == 10) => ‘eof;
) watch (main:ch >= 0) => ‘X;

Fig. 3. Abstraction and label maps for the program of Figure[I[(A).

no type conversion takes place. The free abstraction is used to incorporate
important pointer variables into the extracted model.

array declares an array of elements sharing the same abstraction. The model
builder must be able to infer the size of the array, otherwise, the entire array
contents are abstracted to T. Since each element is explicitly represented, array
must be used judiciously to avoid explosions in the size of the model.

The Abstraction Map. The mapping of abstractions onto variables is specified
by an abstraction map file. Without delving into the details of the syntax, there
are three essential declarations. The first is the file declaration, which associates
a source file name with a scope. All items declared within the scope are assumed
to originate from the (given) source file. The second is the fun declaration, which
names a function and defines a scope in which the abstractions to be applied to
the function’s local variables are specified. The final declaration is of the form
var v : «, which declares the variable named v in the current scope to use
abstraction «. Variables which aren’t declared in the abstraction map receive
the top abstraction by default.

Consider the program given in Figure [[A). An abstraction map for this
function is shown in Figure Bl as the file fsm.am. As can be seen from the map,
the only important values for the variable state are 0, 1, and 2. Similarly, the
values of importance for the character variable ch are EOF with ASCII code -1,
newline with ASCII code 10, character a with ASCII code 97, and character b
with code 98.

The Label Map. In order to generate a labeled transition system, there must
be some rules for attaching labels to the transitions. This is left to the user
to specify, because the labeling rules will depend on what properties the user
ultimately wishes to verify.

The labeling specification is in the form of a label map file. The label map file
associates labels with events. An event occurs when a specific variable is read
or written, a specific function is called, a specified line of code is executed, or a
specified condition becomes true. Typical uses of labeling might be

— to associate a different label with each case of a switch statement performed
on a control-state variable.
— to associate labels with certain system calls, such as semaphore operations.

C Wolf — A Toolset for Extracting Models from C Programs 267

Table 2. Result of combining abstractions in a binary operator.

Type 1 |Type 2 |Result Type
top Any top

minmax |Mod k |minmax

minmax |Interval|minmax

minmax |int minmax

mod(k1) |mod(k2) |mod (led {ki,k2})
mod(k) |part mod(k)

mod(k) |int mod(k)
part Zg, |part Zs, |Coarser of S1, 52
part Zg |int part Zs

— to generate a label every time a shared variable is read /written (with different
labels for read and write).

The file fsm. 1m specified in Figure [3]labels transitions based on the character
read into the variable ch, which can be an a, b, EOF or anything else (called X).
Note that in applying labels, the first watch condition that evaluates to true is
used. Thus, overlapping conditions for X and events a and b pose no problem.

4 Model Generation

Given a program file, an abstraction map and a label map, we will now detail
the steps involved in building an abstract LTS. First, cwcc translates the each
program module to CWI code. CWT is a high-level intermediate code in which
statements are organized into basic blocks, and each statement is either an as-
signment of a pure expression to a single variable, or a control-flow operation (a
goto, conditional goto, or function call/return). Second, cwld is used to link the
CWI modules into a single file. Third, cwmb constructs a model from the CWI
code, directed by user-supplied abstraction and label mappings.

The model generation process can be thought of as an abstract evaluation
scheme where the intermediate code is interpreted using abstract values. In par-
ticular, the evaluation will have to be carried out with respect to an environment
which binds abstract values to variables. Given that model generation is based on
the notion of abstract interpretation [11], we will provide details for the following
crucial questions:

— How are different abstractions combined?
— Is the abstraction sound?
— How are environments represented?

The need for combining abstractions comes from the need to abstractly eval-
uate expressions of the from x op y, where z and y are abstracted using different

268 D.C. DuVarney and S.P. Iyer

abstractions. Given that most of our abstractions target integer variables, we
have a common concrete domain (in the terminology of abstract interpretation)
that can be used to convert one abstraction to another with minimal loss of
information. Table[2 depicts the various conversions that are possible. The main
point to note is that since the abstractions are all based on integers it is possible
to convert from one to another easily.

In [I5] we have shown that all abstract operations are semantically sound with
respect to the original operation in the sense of Cousot’s abstract interpretation
In particular, we have shown soundness with respect to 32-bit 2’s complement
representation for integers. Based on the soundness of arithmetic and logical
operations we have also shown that symbolic evaluation of each CWTI instruction
is semantically sound.

Given that each instruction is abstracted soundly, it is easy to see that se-
quences of instructions are also abstracted soundly. In applying the symbolic
evaluator to a program, we consider a basic block at a time. It is these basic
blocks that form the foundations of the states of our labeled transition system.
Abstract evaluation of the branches and conditional branches at the end of a ba-
sic block determine the successor states of that basic block. Finally, assignment
to a variable targeted by a watch can also lead to a choice point.

As the states are generated, an edge is inserted between the current state
and each of its successors. Edges are labeled by an observable event or by T,
the symbol for non-observable event in Milner’s CCS [33] and the Concurrency
Workbench.

Management of the environments, which include information about the vari-
able bindings, has been implemented in C Wolf using functional mappings, which
are then hashed. This allows two environments that are different from each other
by a single binding to share the rest of the environment. Furthermore, we impose
a variable ordering on the representation of the bindings; this makes the sharing
easier and the comparison of two environments for equality easier. Finally, it
should be noted that the generation of the model might not terminate if the
abstraction has not be defined appropriately. This strategy is very similar to the
generation of the labeled transition system in the Concurrency Workbench.

The last step in model generation is to output the results. The output is
always a file; the format can be human-readable text, a graph (renderable by
dot [29], daVinci [19], or VCG [35]), or a Concurrency Workbench automaton.

5 Optimizations

The result of applying the abstraction file and the label map from Figure B to
the program of Figure [{A) yields a labeled transition system with 52 states and
62 transitions (not shown due to space restrictions). The LTS contains many 7

1 We have shown that for all abstract values a and b the relation v(®(a,b)) 2
{+(d’,b")]a" € v(a), b’ € v(b)} holds, where o and v are the abstraction and the
concretization functions, and + is a typical operation with @ being its abstract
version.

C Wolf — A Toolset for Extracting Models from C Programs 269

(silent) transitions, most of which have no impact on typical properties of in-
terest. Several optimization passes are provided to eliminates these transitions.
The optimizations currently supported are peephole, strong bisimulation, obser-
vational equivalence, and trace equivalence.

The peephole optimizer examines states one at a time to identify states which
can be deleted without affecting observational equivalence. The criteria for se-
lecting such states is simple: states which have only one outgoing 7 transition,
and don’t self-loop, are chosen. Such states can be deleted safely by simply
routing incoming transitions to the (single) successor state. The result is a sys-
tem whose behavior is weakly bisimilar to the original system (observationally
equivalent to the original system).

Additionally, an option is provided to run the peephole optimizer on the fly,
in lock-step with the LTS generation. In this case, an additional restriction is
added to the criteria for state deletion. The extra requirement is that the basic
block number of the destination state must be larger than the state being deleted.
This prevents the system from getting caught in a loop of states connected by
single 7 transitions.

The second set of available optimizations include strong bisimulation and
observational equivalence [33]. These notions are not strictly necessary as they
are available in the Concurrency Workbench. The model displayed in Figure[IIB)
is the result of applying observational equivalence minimization, which reduced
the number of states from 52 to 4.

Finally, cwmb also supports trace equivalence, which results in a model that
concisely represents all possible execution traces. Such a model is not very useful
for most verification problems as it does not even preserve deadlock behavior.

6 Case Studies

We used C Wolf to extract models from the GNU i-protocol, which is part of the
Taylor UUCP package. In [14]25] the sources of version 1.04 were used as an
example to test the effectiveness of various model checkers. The models used in
these efforts were constructed by hand from the source files. Can the model be
automatically generated from the sources? We will now discuss to what extent
this is possible.

The i-Protocol is a sliding window protocol, which maintains a ring buffer of
size 2 - N to implement a window of size N. At any time, the current window
of messages sent but not yet acknowledged by the receiver is marked by two
indices ¢ and j < (i + N) mod 2 - N. The receiver process maintains an index
k which is the index to the last message that was acknowledged. The livelock
which was observed had to do with the fact that the receiver, when sent a packet
outside the window k... (k 4+ N) mod 2 - N ignores it without sending a NAK.
Consequently, when an acknowledgment sent by the receiver is lost in transit,
the sender could resend a message multiple times all of which are ignored by the
receiver.

270 D.C. DuVarney and S.P. Iyer

YNAKO_ sending empty buffer

(probably due to a bogus NAK)

move send window to 0

ignore out of order nak

move send window to | XDATA10

"YACK2_

ignore out of window packet

move send window to 0

XNAKI0

cache out of order packet

move send window to 1

Fig. 4. Behavior of I-protocol when sending 1 data packet, and receiving a reply.

To carry out our experiments we extracted the code for the sender process
from the sources, and replaced the other functionalities by a test harness. The
i-protocol code was then linked into a test harness which simulates the receiving
and sending of packets. The test harness links seamlessly with the i-protocol
code, because the i-protocol code relies on two function pointers, pfIsend and
pflreceive, to transmit and receive data. These functions pointers are bound
at startup to point to the test harness code instead of the original network trans-
mission code. Additionally, the protocol startup phase is skipped, and instead
the window size is fixed to 2 packets (the smallest value which doesn’t “break”
the i-protocol code), and the (data) packet size is set to 18 bytes, the small-
est value which is a multiple of the control packet size (6 bytes). Similarly, the
protocol shutdown, repositioning, and resizing operations were never invoked.

The test harness code does two tasks. It takes outgoing packets and analyzes
them, encoding them into integer values in the range 0...47. The outgoing value
is then assigned to a global variable which is the target of a watch clause in the
label-map. The watch clause generates a label for each packet value, describing
the packet kind, and the position of the sender’s incoming and outgoing windows.

The model generated is shown in Figure H] which shows the discarding of
NAKSs observed by others. We ran the model extractor cwmb with different op-
timizations turned on. In table [, we have listed the optimization performed,
the CPU time, the total system time, and the number of states and transitions
generated. Before the optimizations have been performed, the environments are
thrown away; consequently, the number of bindings are only shown when no
optimizations are done. Finally, we also show the maximum heap space that

C Wolf — A Toolset for Extracting Models from C Programs 271

Table 3. Resources required to model the i-protocol

Test|Opt. CPU|Time|States| Transitions|Bindings|Memory
ip |None 3.77 |4.09 |7746 |7746 10954 189725
ip |Peep 4.87 5.25 |61 108 189729
ip |Bisim 4.88 |5.36 |16 63 189733
ip |ObsEq 4.86 |5.16 (14 63 189737
ip |OnTheFly|4.17 |4.53 |2883 (2883 189729
ip |All 4.57 14.99 |14 63 189741

SML/NJ (used to implement C Wolf) allocates across all the processes, which
seems to remain a constant.

The ftp daemon. The program ftpd is a process which runs continuously on
a UNIX system, processing requests to transfer files over the network. It has
been shown that some implementations of ftpd may be vulnerable to a buffer
overflow attack, in which a user intentionally writes beyond the boundaries of an
array stored on the stack and replaces the return address of the current activa-
tion record, allowing arbitrary code to be executed. One strategy for defending
against such attacks is process monitoring, in which the behavior of a process is
monitored at runtime, and the system calls it performs are compared against a
model. When a process performs a call not captured in the model, an alert is
raised. Recent research has used static analysis to extract a non-deterministic
pushdown automaton from a program’s source code, and used this model as the
basis against which to compare runtime behavior [38].

We applied C Wolf to the ftpd sources with no abstractions, and with in-
structions to label all system calls. This approach has the advantage that the
result is a minimized NFA, which is much easier to deal with than an NPDA.
Figure B shows the NFA extracted from BSD ftpd version 0.3.3, abstracting
all variables away and optimized with respect to observational equivalence. The
NFA is quite tractable as a basis for runtime monitoring, with a total of 22
states. A second advantage of using C Wolf is that the values of variables can
easily be incorporated into the model, resulting in a more precise model than is
possible in [38], which essentially applies a point abstraction to all variables in
the monitored program.

7 Conclusions and Future Work

We have constructed the C Wolf toolset to extract finite state models from C
programs in order to analyze their behavior. We have been able to apply C Wolfto
several small examples and to two large programs. We have also shown that
our methods are effective. In particular, we were surprised to see that the part
abstraction was a very effective abstraction. Furthermore, we were also surprised

272 D.C. DuVarney and S.P. Iyer

syslog

close

Fig. 5. System-call structure of the FTP daemon.

by the fact that simple peephole optimization, which preserved observational
equivalence, did cut down the size of the models created by more than 75%.

Once a model is extracted it can be reasoned about in the Concurrency
Workbench. It should, however, be noted that the abstraction produces an upper
approximation of the program’s behavior. Consequently, only universally path-
quantified CTL* formulae which are invariant under stuttering are preserved by
the extraction process — a characteristic shared by all relevant work on software
model-checking.

Clearly, C Wolf can be improved upon in a number of ways, mostly in the
kinds of abstraction techniques that are available to the user. New abstractions
for dealing with arrays are under development, and we are experimenting with
symbolic abstractions which capture relationships between the variables of a
program. An additional feature being added to C Wolf is the option of generating

C Wolf — A Toolset for Extracting Models from C Programs 273

a pushdown automaton model for use with the XMC model checker [12], enabling
arbitrarily recursive programs to be model-checked.

Acknowledgments. We are grateful to Rance Cleaveland for fruitful discus-
sions and support. We would also like to thank the developers of Standard ML
of New Jersey, ckit, dot, daVinci, and VCG.

References

10.

11.

Thomas Ball, Rupak Majumdar, Todd Millstein, and Sriram Rajamani. Automatic
predicate abstraction of ¢ programs. In Proceedings of the ACM SIGPLAN 2001
Conference of Programming Language Design and Implementation (PLDI 2001).
ACM Press, June 2001.

Thomas Ball and Sriram K. Rajamani. Automatically validating temporal safety
properties of interfaces. In The 8th International SPIN Workshop on Model Check-
ing of Software (SPIN 2001), volume 2057 of LNCS, pages 103-122, New York-
Berlin-Heidelberg, May 2001. Springer-Verlag.

Thomas Ball and Sriram K. Rajamani. The slam toolkit. In 13th Conference on
Computer Aided Verification (CAV ’01), volume 2102 of LNCS, New York-Berlin-
Heidelberg, July 2001. Springer-Verlag.

Ahmed Bouajjani, Rachid Echahed, and Peter Habermehl. Verifying infinite state
processes with sequential and parallel composition. In Conference Record of the
22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL’95), pages 95-106, San Francisco, California, January 22-25, 1995.
ACM Press.

. Guillaume Brat, Klaus Havelund, SeungJoon Park, and William Visser. Java

pathfinder: Second generation of a java model checker, July 2000.

O. Burkart and B. Steffen. Model-checking the full-modal mu-calculus for infinite
sequential processes. In P. Degano, R. Gorrieri, and A. Marchetti-Spaccamela, edi-
tors, Automata, Languages and Programming (ICALP ’97), volume 1256 of Lecture
Notes in Computer Science, pages 419-429, Bologna, Italy, July 1997. Springer-
Verlag. Full version to appear in Theoretical Computer Science.

Andy Chou, Benjamin Chelf, Dawson Engler, and Mark Heinrich. Using meta-level
compilation to check FLASH protocol code. ACM SIGPLAN Notices, 35(11):59—
70, November 2000.

E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-
state concurrent systems using temporal logic specifications. ACM Transactions
on Programming Languages and Systems, 8(2):244-263, April 1986.

E. M. Clarke and J. M. Wing. Formal methods : state of the art and future directio
ns. ACM Computing Surveys, 28(4):626-643, December 1996.

James Corbett, Matthew Dwyer, John Hatcliff, Corina Pasareanu, Robby, Shawn
Laubach, and Hongjun Zheng. Bandera: extracting finite-state models from Java
source code. In 22nd International Conference on Software Engineering, pages
439-448, Limerick, Ireland, June 2000. IEEE Computer Society.

P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Proceedings
of the Fourth ACM Symposium on Principles of Programming Languages, pages
238-252, January 1977.

274

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

D.C. DuVarney and S.P. Iyer

C.R. Ramakrishnan, I.V. Ramakrishnan, S. A. Smolka, Y. Dong, X. Du, A. Roy-
choudhury, and V.N. Venkatakrishnan. XMC: A logic-programming-based verifi-
cation toolset. In Computer Aided Verification (CAV 2000), Chicago, Illinois, June
2000.

Claudio Demartini, Radu losif, and Riccardo Sisto. A deadlock detection tool for
concurrent java programs. Software: Practice and Experience, 29(7):577-603, June
1999.

Yifei Dong, Xiaoqun Du, Y. S. Ramakrishna, C. R. Ramakrishnan, I. V. Ramakr-
ishnan, Scott A. Smolka, Oleg Sokolsky, Eugene W. Stark, and David Scott Warren.
Fighting livelock in the i-protocol: A comparative study of verification tools. In
Fifth International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS ’99), volume 1579 of Lecture Notes in Computer
Science, pages 74-88. Springer-Verlag, 1999.

Daniel C. DuVarney. Abstraction-Based Generation of Finite State Models

from C Programs. PhD thesis, North Carolina State University, 2002.

M. B. Dwyer, J. Hatcliff, R. Joehanes, S. Laubach, Robby, C. S. Pasareanu,
W. Visser, and H. Zheng. Tool-supported program abstraction for finite-state
verification. In Proceedings of the 23rd International Conference on Software En-
gineering (ICSE-01), pages 177-187, Los Alamitos, California, May12-19 2001.
IEEE Computer Society.

E. M. Clarke, K. L. McMillan, S. Campos, and V. Hartonas-Garmhausen. Symbolic
model checking. In Proceedings of the Eighth International Conference on Com-
puter Aided Verification CAV, volume 1102 of Lecture Notes in Computer Science,
pages 419-422. Springer Verlag, July/August 1996.

Dawson Engler, Benjamin Chelf, Andy Chou, and Seth Hallem. Checking system
rules using system-specific, programmer-written compiler extensions. In 4th Sym-
posium on Operating System Design and Implementation, Berkeley, CA, October
2000. USENIX Association.

M. Frohlich and M. Werner. Demonstration of the interactive graph-visualization
system davinci. In R. Tamassia and 1. G. Tollis, editors, Graph Drawing, volume
894 of Lecture Notes in Computer Science, pages 266-269. DIMACS, Springer-
Verlag, October 1994. ISBN 3-540-58950-3.

Patrice Godefroid. Model checking for programming languages using VeriSoft. In
The 24th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL 1997), pages 174-186, Paris, France, 1997. ACM SIGACT
and SIGPLAN, ACM Press.

Patrice Godefroid, Bob Hanmer, and Lalita Jagadeesan. Model checking without a
model: An analysis of the heart-beat monitor of a telephone switch using verisoft. In
Proceedings of the ACM SIGSOFT International Symposium on Software Testing
and Analysis (ISSTA 98), pages 124-133, Clearwater Beach, FL, March 1998.
ACM Press.

Patrice Godefroid, Bob Hanmer, and Lalita Jagadeesan. Systematic software test-
ing using verisoft: An analysis of the 4ess heart-beat monitor. Bell Labs Technical
Journal, 3(2), April-June 1998.

K. Havelund and T. Pressburger. Model checking java programs using java
pathfinder. International Journal on Software Tools for Technology Transfer, 2(4),
april 1998.

G. Holzmann. Design and Validation of Computer Protocols. Prentice Hall, En-
glewood Cliffs, New Jersey, 1991.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

C Wolf — A Toolset for Extracting Models from C Programs 275

Gerard J. Holzmann. The engineering of a model checker: the gnu i-protocol case
study revisited. In Proceedings of the 6th Spin Workshop, volume 1680 of LNCS,
Toulouse, France, Sept. 1999. Springer Verlag.

Gerard J. Holzmann. Logic verification of ANSI-C code with SPIN. In Proceedings
of the 7th International SPIN Workshop, volume 1885 of LNCS. Springer-Verlag,
September 2000.

G.J. Holzmann and Margaret H. Smith. Software model checking - extracting
verification models from source code. In Formal Methods for Protocol Engineering
and Distributed Systems, pages 481497, Kluwer Academic Publ., Oct. 1999. also
in: Software Testing, Verification and Reliability, Vol. 11, No. 2, June 2001, pp.
65-79.

Radu losif. Formal verification applied to java concurrent software. In Proceedings
of the 22nd International Conference on Software Engineering, pages 707-709, June
2000.

Eleftherios Koutsofios. Drawing graphs with dot. Technical report, AT&T Bell
Laboratories, Murray Hill, NJ, USA, November 1996. This report, and the pro-
gram, is included in the graphviz package, available for non-commercial use at
URL http://www.research.att.com/sw/tools/graphviz/.

David Ladd, Satish Chandra, Michael Siff, Nevin Heintze, Dino Oliva, and Dave
MacQueen. Ckit: A front end for ¢ in sml, March 2000. Available from URL
http://cm.bell-labs.com/cm/cs/what/smlnj/doc/ckit/index.html.

David Lie, Andy Chou, Dawson Engler, and David L. Dill. A simple method for
extracting models from protocol code. In Proceedings of the 28th Annual Interna-
tional Symposium on Computer Architecture, pages 192—203, Goteborg, Sweden,
June 30-July 4, 2001. IEEE Computer Society and ACM SIGARCH.

McMillan, K. L. Symbolic Model Checking. Kluwer Academic Publishers, Norwell
Massachusetts, 1993.

R. Milner. Communication and Concurrency. PHI Series in Computer Science.
Prentice Hall, 1989.

R. Cleaveland and S. Sims. The NCSU concurrency workbench. In Rajeev Alur and
Thomas A. Henzinger, editors, Proceedings of the Eighth International Conference
on Computer Aided Verification CAV, volume 1102 of Lecture Notes in Computer
Science, pages 394-397, New Brunswick, NJ, USA, July/August 1996. Springer
Verlag.

G. Sander. Vcg — visualization of compiler graphs. Technical Report A01-95,
Universitat des Saarlande, FB 14 Informatik, 1995.

Scott Stoller. Model checking multi-threaded distributed java programs. In Pro-
ceedings of the Tth International SPIN Workshop, volume 1885 of LNCS, pages
224-244. Springer-Verlag, 2000.

William Visser, Kluas Havelund, Guillaume Brat, and SeungJoon Park. Model
checking programs. In P Alexander and Pierre Flener, editors, Proceedings of ASE-
2000: The 15th IEEE Conference on Automated Software Engineering, Grenoble,
France, September 2000. IEEE Computer Society Press.

David Wagner and Drew Dean. Intrusion detection via static analysis. In Fran-
cis M. Titsworth, editor, Proceedings of the 2001 IEEE Symposium on Security
and Privacy (S&P-01), pages 156-169, Los Alamitos, CA, May 14-16 2001. IEEE
Computer Society.

	C Wolf – A Toolset for Extracting Models from C Programs
	Introduction
	RelatedWork

	Overview
	Input Restrictions

	Abstraction and Observable Events
	The Abstraction Map.
	The Label Map.

	Model Generation
	Optimizations
	Case Studies
	Conclusions and Future Work
	Acknowledgments.
	References

