Abstract
Concurrent systems are commonly verified after computing a state graph describing all possible behaviors. Unfortunately, this state graph is often too large to be effectively built. Partial-order techniques have been developed to avoid combinatorial explosion while preserving the properties of interest. This paper investigates the combination of two such approaches, persistent sets and covering steps, and proposes partial enumeration algorithms that cumulate their respective benefits.
Chapter PDF
Similar content being viewed by others
Keywords
References
B. Bérard and L. Fribourg. Reachability analysis of (timed) petri nets using real arithmetic. In Proceedings of CONCUR’99, pages 178–193. Springer Verlag, LNCS 1664, 1999.
J. C. Corbett. Evaluating deadlock detection methods for concurrent software. IEEE Transactions on software engineering, VOL. 22(NO. 3), March 1996.
F. Chu and X. Xie. Deadlock analysis of petri nets using siphons and mathematical programming. In IEEE Trans. on Robotics and Automation, volume 13, pages 793–804, 1997.
P. Godefroid. Using partial orders to improve automatic verification methods. In Proceedings of CAV’90, pages 321–340. ACM, DIMACS volume 3, 1990.
P. Godefroid. Partial-Order Methods for the Verification of Concurrent Systems. Springer Verlag, LNCS 1032, 1996.
P. Godefroid and D. Pirottin. Refining dependencies improves partial-order verification methods. In Proceedings of CAV’93. Springer Verlag, LNCS 697, 1993.
P. Godefroid and P. Wolper. Using partial orders for the efficient verification of deadlock freedom and safety properties. Formal Metho ds in System Design, 2(2):149–164, 1993.
K. Jensen. Couloured petrinets. In Petri Nets: CentralMo deland Their Properties, pages 248–299. Springer-Verlag, LNCS 254, 1986.
A. Mazurkiewicz. Trace theory. In Petri Nets: Applications and Relationships to Other Model of Concurrency, Advances in Petri nets 1986, Part II; Proceedings of an advanced Course, pages 279–324. Springer Verlag, LNCS 255, 1986.
R. Milner. Communication and Concurrency. Prentice Hall, 1989.
M. Naimi and M. Trehel. An improvement of the logN distributed algorithm for mutual exclusion. In Proceedings of ICDCS’87, pages 371–377, Washington, D.C., USA, September 1987. IEEE Computer Society Press.
W. T. Overman. Verification of concurrent systems: function and timing. PhD thesis, University of California, 1981.
D. Peled. All from one, one for all: On model checking using representatives. In Proceedings of CAV’93, pages 409–423. Springer Verlag, LNCS 697, 1993.
Doron Peled. Ten years of partial order reduction. In Proceedings of CAV’98, pages 17–28. Springer Verlag, LNCS 1427, 1998.
D. H. Pitt and D. Freestone. The derivation of conformance tests from lotos specifications. IEEE Transactions on Software Engineering, 1990.
W. Reisig. Petri Nets: an Introduction. Springer-Verlag, EATCS, 1985.
A. Valmari. Error detection by reduced reachability graph generation. In Proceedings of ATPN’88. Springer Verlag, LNCS 424, 1988.
A. Valmari. State Space Generation: Efficiency and Practicality. PhD thesis, Tampere University of Technology, 1988.
A. Valmari. Stubborn sets for reduced state space generation. In Proceedings of ATPN’89. Springer Verlag, LNCS 483, 1989.
A. Valmari. A stubborn attack on state explosion. In Proceedings of CAV’90, pages 25–42. ACM, DIMACS volume 3, 1990.
F. Vernadat, P. Azéma, and F. Michel. Covering step graph. In Proceedings of ATPN’96. Springer Verlag, LNCS 1091, 1996.
F. Vernadat and F. Michel. Covering step graph preserving failure semantics. In Proceedings of ATPN’97. Springer Verlag, LNCS 1248, 1997.
P. Wolper and P. Godefroid. Partial-order methods for temporal verification. In Proceedings of CONCUR’93. Springer Verlag, LNCS 575, 1993.
M.C. Zhou, F. Dicesare, and A.A. Desrochers. A hybrid methodology for synthesis of petri net models for manufacturing systems. In IEEE Trans. on Robotics and Automation 8:3, pages 350–361, 1993.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2002 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ribet, PO., çois, F., Berthomieu, B. (2002). On Combining the Persistent Sets Method with the Covering Steps Graph Method. In: Peled, D.A., Vardi, M.Y. (eds) Formal Techniques for Networked and Distributed Sytems — FORTE 2002. FORTE 2002. Lecture Notes in Computer Science, vol 2529. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36135-9_22
Download citation
DOI: https://doi.org/10.1007/3-540-36135-9_22
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-00141-6
Online ISBN: 978-3-540-36135-0
eBook Packages: Springer Book Archive