Abstract
Facial recognition technology needs to be robust for arbitrary facial appearances because a face changes according to facial expressions and facial poses. In this paper, we propose a method which automatically performs face recognition for variously scaled facial images. The method performs flexible feature matching using features normalized for facial scale. For normalization, the facial scale is probabilistically estimated and is used as a scale factor of an improved Gabor wavelet transformation. We implement a face recognition system based on the proposed method and demonstrate the advantages of the system through facial recognition experiments. Our method is more efficient than any other and can maintain a high accuracy of face recognition for facial scale variations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
P. Ekman: Three classes of nonverbal behavior, Aspects of Nonverbal Communication, Swets and Zeitlinger (1980).
X. Song, C. Lee, G. Xu and S. Tsuji: Extracting facial features with partial feature template, Proceedings of the Asian Conference on Computer Vision, pp. 751–754 (1994).
M. Turk and A. Pentland: Eigenface for recognition, Journal of Cognitive Neuroscience, Vol. 3, No. 1, pp. 71–86 (1991).
P. Belhumeur, J. Hespanha and D. Kriegman: Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection, IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 19, No. 7, pp. 711–720 (1997).
J. G. Daugman: Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters, Journal of the Optical Society of America A, Vol. 2, pp. 1160–1169 (1985).
L. Wiskott, J. M. Fellous, N. Krüger and C. von der Malsburg: Face recognition and gender determination, Proceedings of the International Workshop on Automatic Face and Gesture Recognition, pp. 92–97 (1995).
L. Wiskott, J. M. Fellous, N. Krüger and C. von der Malsburg: Face recognition by Elastic Bunch Graph Matching, IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 19, No. 7, pp. 775–779 (1997).
D. Pramadihanto, Y. Iwai and M. Yachida: A flexible feature matching for automatic face and facial points detection, Proceedings of the 14th International Conference on Pattern Recognition, pp. 324–329 (1998).
D. Pramadihanto, Y Iwai and M. Yachida: Integrated Person Identification and Expression Recognition from Facial Images, IEICE Trans. on Information and System, Vol. E84—D, No. 7, pp. 856–866 (2001).
N. Krüger, M. Pötzsch and C. von der Malsburg: Determination of face position and pose with a learned representation based on labelled graphs, Image and Vision Computing, Vol. 15, pp. 665–673 (1997).
C. Kotropoulos, A. Tefas and I. Pitas: Morphological elastic graph matching applied to frontal face authentication under well-controlled and real conditions, Pattern Recognition, Vol. 33, pp. 1935–1947 (2000).
M. Lades, J. C. Vorbruggen, J. Buhmann, J. Lange, C. von der Malsburg, R. P. Wurtz and W. Konen: Distortion invariant object recognition in the Dynamic Link Architecture, IEEE Trans. Comput., Vol. 42, pp. 300–311 (1993).
D. Pramadihanto, H. Wu and M. Yachida: Face Identification under Varying Pose Using a Single Example View, The Transactions of the Institute of Electronics, Information and Communication Engineers D-II, Vol. J80-D-II, No. 8, pp. 2232–2238 (1997).
M. J. Lyons, J. Budynek, A. Plante and S. Akamatsu: Classifying Facial Attributes using a 2-D Gabor Wavelet Representation and Discriminant Analysis, Proceedings of the International Conference on Automatic Face and Gesture Recognition, pp. 202–207 (2000).
M. Lades: Invariant Object Recognition Based on Dynamical Links, Robust to Scaling, Rotation and Variation of Illumination, Ruhr Universität, Bochum, Germany (1995).
K. Okada, J. Steffens, T. Maurer, H. Hong, E. Elagin, H. Neven and C. von der Malsburg: The Bochum/USC Face Recognition System: And How it Fared in the FERET PhaseIII Test, Springer-Verlag, Sterling, UK (1998).
T. Hirayama, Y Iwai and M. Yachida: Person Identification System Robust for Facial Scale Variants, IEEE International Workshop on Cues in Communication, No. 11 (2001).
A. M. Martinez and R. Benavente: The AR face database, CVC Technical Report 24 (1998).
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2002 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hirayama, T., Iwai, Y., Yachida, M. (2002). Face Recognition Based on Efficient Facial Scale Estimation. In: Perales, F.J., Hancock, E.R. (eds) Articulated Motion and Deformable Objects. AMDO 2002. Lecture Notes in Computer Science, vol 2492. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36138-3_17
Download citation
DOI: https://doi.org/10.1007/3-540-36138-3_17
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-00149-2
Online ISBN: 978-3-540-36138-1
eBook Packages: Springer Book Archive