Skip to main content

A Computational Algebraic Topology Model for the Deformation of Curves

  • Conference paper
  • First Online:
Articulated Motion and Deformable Objects (AMDO 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2492))

Included in the following conference series:

Abstract

A new method for the deformation of curves is presented. It is based upon a decomposition of the linear elasticity problem into basic physical laws. Unlike other methods which solve the partial differential equation arising from the physical laws by numerical techniques, we encode the basic laws using computational algebraic topology. Conservative laws use exact global values while constitutive allow to make wise assumptions using some knowledge about the problem and the domain. The deformations computed with our approach have a physical interpretation. Furthermore, our algorithm performs with either 2D or 3D problems. We finally present an application of the model in updating road databases and results validating our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.F. Auclair-Fortier, P. Poulin, D. Ziou, and M. Allili. Physics Based Resolution of Smoothing and Optical Flow: A Computational Algebraic Topology Approach. Technical Report 269, Département de mathématiques et d’informatique, Université de Sherbrooke, 2001.

    Google Scholar 

  2. L. Bentabet, S. Jodouin, D. Ziou, and J. Vaillancourt. Automated Updating of Road Databases from SAR Imagery: Integration of Road Databases and SAR Imagery information. In Proceedings of the Fourth International Conference on Information Fusion, volume WeA1, pages 3–10, 2001.

    Google Scholar 

  3. A.P. Boresi. Elasticity in Engineering Mechanics. Prentice Hall, 1965.

    Google Scholar 

  4. F. Cosmi. Numerical Solution of Plane Elasticity Problems with the Cell Method. to appear in Computer Modeling in Engineering and Sciences, 2, 2001.

    Google Scholar 

  5. S.F.F. Gibson and B. Mirtich. A Survey of Deformable Modeling in Computer Graphics. Technical report, Mitsubishi Electric Research Laboratory, 1997.

    Google Scholar 

  6. M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active Contour Models. The International Journal of Computer Vision, 1(4):321–331, 1988.

    Article  Google Scholar 

  7. G. T. Mase and G. E. Mase. Continuum Mechanics for Engineers. CRC Press, 1999.

    Google Scholar 

  8. C. Mattiussi. The Finite Volume, Finite Difference, and Finite Elements Methods as Numerical Methods for Physical Field Problems. Advances in Imaging and Electron Physics, 113:1–146, 2000.

    Google Scholar 

  9. J. Montagnat, H. Delingette, N. Scapel, and N. Ayache. Representation, shape, topology and evolution of deformable surfaces. Application to 3D medical imaging segmentation. Technical Report 3954, INRIA, 2000.

    Google Scholar 

  10. S. Platt and N. Badler. Animating Facial Expressions. Computer Graphics, 15(3):245–252, 1981.

    Article  Google Scholar 

  11. P. Poulin, M.-F. Auclair-Fortier, D. Ziou and M. Allili. A Physics Based Model for the Deformation of Curves: A Computational Algebraic Topology Approach. Technical Report 270, Département de mathématiques et d’informatique, Université de Sherbrooke, 2001.

    Google Scholar 

  12. S. Sclaroff and A. Pentland. Model Matching for Correspondance and Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(6):545–561, 1995.

    Article  Google Scholar 

  13. E. Tonti. A Direct Discrete Formulation of Field Laws: The Cell Method. CMES-Computer Modeling in Engineering & Sciences, 2(2):237–258, 2001.

    Google Scholar 

  14. E. Tonti. Finite formulation of the electromagnetic field. Progress in Electromagnetics Research, PIER 32 (Special Volume on Geometrical Methods for Comp. Electromagnetics): 1–44, 2001.

    Article  Google Scholar 

  15. D. Ziou. Finding Lines in Grey-Level Images. Technical Report 240, Département de mathématiques et d’informatique, Université de Sherbrooke, 1999.

    Google Scholar 

  16. D. Ziou and M. Allili. An Image Model with Roots in Computational Algebraic Topology: A Primer. Technical Report 264, Département de mathématiques et d’informatique, Université de Sherbrooke, April 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Auclair-Fortier, M.F., Poulin, P., Ziou, D., Allili, M. (2002). A Computational Algebraic Topology Model for the Deformation of Curves. In: Perales, F.J., Hancock, E.R. (eds) Articulated Motion and Deformable Objects. AMDO 2002. Lecture Notes in Computer Science, vol 2492. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36138-3_5

Download citation

  • DOI: https://doi.org/10.1007/3-540-36138-3_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00149-2

  • Online ISBN: 978-3-540-36138-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics